Step |
Hyp |
Ref |
Expression |
1 |
|
nvge0.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nvge0.6 |
|- N = ( normCV ` U ) |
3 |
|
2rp |
|- 2 e. RR+ |
4 |
3
|
a1i |
|- ( ( U e. NrmCVec /\ A e. X ) -> 2 e. RR+ ) |
5 |
1 2
|
nvcl |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
6 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
7 |
6 2
|
nvz0 |
|- ( U e. NrmCVec -> ( N ` ( 0vec ` U ) ) = 0 ) |
8 |
7
|
adantr |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( 0vec ` U ) ) = 0 ) |
9 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
10 |
9
|
oveq1i |
|- ( ( 1 + -u 1 ) ( .sOLD ` U ) A ) = ( 0 ( .sOLD ` U ) A ) |
11 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
12 |
1 11 6
|
nv0 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 0 ( .sOLD ` U ) A ) = ( 0vec ` U ) ) |
13 |
10 12
|
eqtr2id |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 0vec ` U ) = ( ( 1 + -u 1 ) ( .sOLD ` U ) A ) ) |
14 |
|
neg1cn |
|- -u 1 e. CC |
15 |
|
ax-1cn |
|- 1 e. CC |
16 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
17 |
1 16 11
|
nvdir |
|- ( ( U e. NrmCVec /\ ( 1 e. CC /\ -u 1 e. CC /\ A e. X ) ) -> ( ( 1 + -u 1 ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) |
18 |
15 17
|
mp3anr1 |
|- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ A e. X ) ) -> ( ( 1 + -u 1 ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) |
19 |
14 18
|
mpanr1 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 + -u 1 ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) |
20 |
1 11
|
nvsid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 ( .sOLD ` U ) A ) = A ) |
21 |
20
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) |
22 |
13 19 21
|
3eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 0vec ` U ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) |
23 |
22
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( 0vec ` U ) ) = ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
24 |
8 23
|
eqtr3d |
|- ( ( U e. NrmCVec /\ A e. X ) -> 0 = ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
25 |
1 11
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) |
26 |
14 25
|
mp3an2 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) |
27 |
1 16 2
|
nvtri |
|- ( ( U e. NrmCVec /\ A e. X /\ ( -u 1 ( .sOLD ` U ) A ) e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
28 |
26 27
|
mpd3an3 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
29 |
24 28
|
eqbrtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
30 |
1 11 2
|
nvm1 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( -u 1 ( .sOLD ` U ) A ) ) = ( N ` A ) ) |
31 |
30
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) A ) ) ) = ( ( N ` A ) + ( N ` A ) ) ) |
32 |
5
|
recnd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. CC ) |
33 |
32
|
2timesd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 2 x. ( N ` A ) ) = ( ( N ` A ) + ( N ` A ) ) ) |
34 |
31 33
|
eqtr4d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) A ) ) ) = ( 2 x. ( N ` A ) ) ) |
35 |
29 34
|
breqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( 2 x. ( N ` A ) ) ) |
36 |
4 5 35
|
prodge0rd |
|- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) |