Metamath Proof Explorer


Theorem nvgf

Description: Mapping for the vector addition operation. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvgf.1
|- X = ( BaseSet ` U )
nvgf.2
|- G = ( +v ` U )
Assertion nvgf
|- ( U e. NrmCVec -> G : ( X X. X ) --> X )

Proof

Step Hyp Ref Expression
1 nvgf.1
 |-  X = ( BaseSet ` U )
2 nvgf.2
 |-  G = ( +v ` U )
3 2 nvgrp
 |-  ( U e. NrmCVec -> G e. GrpOp )
4 1 2 bafval
 |-  X = ran G
5 4 grpofo
 |-  ( G e. GrpOp -> G : ( X X. X ) -onto-> X )
6 fof
 |-  ( G : ( X X. X ) -onto-> X -> G : ( X X. X ) --> X )
7 3 5 6 3syl
 |-  ( U e. NrmCVec -> G : ( X X. X ) --> X )