Metamath Proof Explorer


Theorem nvgrp

Description: The vector addition operation of a normed complex vector space is a group. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypothesis nvabl.1
|- G = ( +v ` U )
Assertion nvgrp
|- ( U e. NrmCVec -> G e. GrpOp )

Proof

Step Hyp Ref Expression
1 nvabl.1
 |-  G = ( +v ` U )
2 1 nvablo
 |-  ( U e. NrmCVec -> G e. AbelOp )
3 ablogrpo
 |-  ( G e. AbelOp -> G e. GrpOp )
4 2 3 syl
 |-  ( U e. NrmCVec -> G e. GrpOp )