Description: The vector addition operation of a normed complex vector space is a group. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nvabl.1 | |- G = ( +v ` U ) |
|
Assertion | nvgrp | |- ( U e. NrmCVec -> G e. GrpOp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvabl.1 | |- G = ( +v ` U ) |
|
2 | 1 | nvablo | |- ( U e. NrmCVec -> G e. AbelOp ) |
3 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
4 | 2 3 | syl | |- ( U e. NrmCVec -> G e. GrpOp ) |