Step |
Hyp |
Ref |
Expression |
1 |
|
nvgt0.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nvgt0.5 |
|- Z = ( 0vec ` U ) |
3 |
|
nvgt0.6 |
|- N = ( normCV ` U ) |
4 |
1 2 3
|
nvz |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = Z ) ) |
5 |
4
|
necon3bid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> A =/= Z ) ) |
6 |
1 3
|
nvcl |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
7 |
1 3
|
nvge0 |
|- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) |
8 |
|
ne0gt0 |
|- ( ( ( N ` A ) e. RR /\ 0 <_ ( N ` A ) ) -> ( ( N ` A ) =/= 0 <-> 0 < ( N ` A ) ) ) |
9 |
6 7 8
|
syl2anc |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> 0 < ( N ` A ) ) ) |
10 |
5 9
|
bitr3d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A =/= Z <-> 0 < ( N ` A ) ) ) |