| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvgt0.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nvgt0.5 |  |-  Z = ( 0vec ` U ) | 
						
							| 3 |  | nvgt0.6 |  |-  N = ( normCV ` U ) | 
						
							| 4 | 1 2 3 | nvz |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = Z ) ) | 
						
							| 5 | 4 | necon3bid |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> A =/= Z ) ) | 
						
							| 6 | 1 3 | nvcl |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) | 
						
							| 7 | 1 3 | nvge0 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) | 
						
							| 8 |  | ne0gt0 |  |-  ( ( ( N ` A ) e. RR /\ 0 <_ ( N ` A ) ) -> ( ( N ` A ) =/= 0 <-> 0 < ( N ` A ) ) ) | 
						
							| 9 | 6 7 8 | syl2anc |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> 0 < ( N ` A ) ) ) | 
						
							| 10 | 5 9 | bitr3d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A =/= Z <-> 0 < ( N ` A ) ) ) |