Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of Kreyszig p. 51. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nvinv.1 | |- X = ( BaseSet ` U ) |
|
nvinv.2 | |- G = ( +v ` U ) |
||
nvinv.4 | |- S = ( .sOLD ` U ) |
||
nvinv.5 | |- M = ( inv ` G ) |
||
Assertion | nvinv | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) = ( M ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvinv.1 | |- X = ( BaseSet ` U ) |
|
2 | nvinv.2 | |- G = ( +v ` U ) |
|
3 | nvinv.4 | |- S = ( .sOLD ` U ) |
|
4 | nvinv.5 | |- M = ( inv ` G ) |
|
5 | eqid | |- ( 1st ` U ) = ( 1st ` U ) |
|
6 | 5 | nvvc | |- ( U e. NrmCVec -> ( 1st ` U ) e. CVecOLD ) |
7 | 2 | vafval | |- G = ( 1st ` ( 1st ` U ) ) |
8 | 3 | smfval | |- S = ( 2nd ` ( 1st ` U ) ) |
9 | 1 2 | bafval | |- X = ran G |
10 | 7 8 9 4 | vcm | |- ( ( ( 1st ` U ) e. CVecOLD /\ A e. X ) -> ( -u 1 S A ) = ( M ` A ) ) |
11 | 6 10 | sylan | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) = ( M ` A ) ) |