Step |
Hyp |
Ref |
Expression |
1 |
|
nvs.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nvs.4 |
|- S = ( .sOLD ` U ) |
3 |
|
nvs.6 |
|- N = ( normCV ` U ) |
4 |
|
neg1cn |
|- -u 1 e. CC |
5 |
1 2 3
|
nvs |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( N ` ( -u 1 S A ) ) = ( ( abs ` -u 1 ) x. ( N ` A ) ) ) |
6 |
4 5
|
mp3an2 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( -u 1 S A ) ) = ( ( abs ` -u 1 ) x. ( N ` A ) ) ) |
7 |
|
ax-1cn |
|- 1 e. CC |
8 |
7
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
9 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
10 |
8 9
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
11 |
10
|
oveq1i |
|- ( ( abs ` -u 1 ) x. ( N ` A ) ) = ( 1 x. ( N ` A ) ) |
12 |
1 3
|
nvcl |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
13 |
12
|
recnd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. CC ) |
14 |
13
|
mulid2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 x. ( N ` A ) ) = ( N ` A ) ) |
15 |
11 14
|
eqtrid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( abs ` -u 1 ) x. ( N ` A ) ) = ( N ` A ) ) |
16 |
6 15
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( -u 1 S A ) ) = ( N ` A ) ) |