Metamath Proof Explorer


Theorem nvmcl

Description: Closure law for the vector subtraction operation of a normed complex vector space. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvmf.1
|- X = ( BaseSet ` U )
nvmf.3
|- M = ( -v ` U )
Assertion nvmcl
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) e. X )

Proof

Step Hyp Ref Expression
1 nvmf.1
 |-  X = ( BaseSet ` U )
2 nvmf.3
 |-  M = ( -v ` U )
3 1 2 nvmf
 |-  ( U e. NrmCVec -> M : ( X X. X ) --> X )
4 fovrn
 |-  ( ( M : ( X X. X ) --> X /\ A e. X /\ B e. X ) -> ( A M B ) e. X )
5 3 4 syl3an1
 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) e. X )