Step |
Hyp |
Ref |
Expression |
1 |
|
nvmtri.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nvmtri.3 |
|- M = ( -v ` U ) |
3 |
|
nvmtri.6 |
|- N = ( normCV ` U ) |
4 |
|
neg1cn |
|- -u 1 e. CC |
5 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
6 |
1 5
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
7 |
4 6
|
mp3an2 |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
8 |
7
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
9 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
10 |
1 9 3
|
nvtri |
|- ( ( U e. NrmCVec /\ A e. X /\ ( -u 1 ( .sOLD ` U ) B ) e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) ) |
11 |
8 10
|
syld3an3 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) ) |
12 |
1 9 5 2
|
nvmval |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
13 |
12
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M B ) ) = ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ) |
14 |
1 5 3
|
nvs |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( N ` ( -u 1 ( .sOLD ` U ) B ) ) = ( ( abs ` -u 1 ) x. ( N ` B ) ) ) |
15 |
4 14
|
mp3an2 |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` ( -u 1 ( .sOLD ` U ) B ) ) = ( ( abs ` -u 1 ) x. ( N ` B ) ) ) |
16 |
|
ax-1cn |
|- 1 e. CC |
17 |
16
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
18 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
19 |
17 18
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
20 |
19
|
oveq1i |
|- ( ( abs ` -u 1 ) x. ( N ` B ) ) = ( 1 x. ( N ` B ) ) |
21 |
1 3
|
nvcl |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` B ) e. RR ) |
22 |
21
|
recnd |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` B ) e. CC ) |
23 |
22
|
mulid2d |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 x. ( N ` B ) ) = ( N ` B ) ) |
24 |
20 23
|
syl5eq |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( ( abs ` -u 1 ) x. ( N ` B ) ) = ( N ` B ) ) |
25 |
15 24
|
eqtr2d |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( N ` B ) = ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) |
26 |
25
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` B ) = ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) |
27 |
26
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` A ) + ( N ` B ) ) = ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) ) |
28 |
11 13 27
|
3brtr4d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) |