| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvmtri.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nvmtri.3 |  |-  M = ( -v ` U ) | 
						
							| 3 |  | nvmtri.6 |  |-  N = ( normCV ` U ) | 
						
							| 4 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 5 |  | eqid |  |-  ( .sOLD ` U ) = ( .sOLD ` U ) | 
						
							| 6 | 1 5 | nvscl |  |-  ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) | 
						
							| 7 | 4 6 | mp3an2 |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) | 
						
							| 8 | 7 | 3adant2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) | 
						
							| 9 |  | eqid |  |-  ( +v ` U ) = ( +v ` U ) | 
						
							| 10 | 1 9 3 | nvtri |  |-  ( ( U e. NrmCVec /\ A e. X /\ ( -u 1 ( .sOLD ` U ) B ) e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) ) | 
						
							| 11 | 8 10 | syld3an3 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) ) | 
						
							| 12 | 1 9 5 2 | nvmval |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M B ) ) = ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ) | 
						
							| 14 | 1 5 3 | nvs |  |-  ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( N ` ( -u 1 ( .sOLD ` U ) B ) ) = ( ( abs ` -u 1 ) x. ( N ` B ) ) ) | 
						
							| 15 | 4 14 | mp3an2 |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( N ` ( -u 1 ( .sOLD ` U ) B ) ) = ( ( abs ` -u 1 ) x. ( N ` B ) ) ) | 
						
							| 16 |  | ax-1cn |  |-  1 e. CC | 
						
							| 17 | 16 | absnegi |  |-  ( abs ` -u 1 ) = ( abs ` 1 ) | 
						
							| 18 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 19 | 17 18 | eqtri |  |-  ( abs ` -u 1 ) = 1 | 
						
							| 20 | 19 | oveq1i |  |-  ( ( abs ` -u 1 ) x. ( N ` B ) ) = ( 1 x. ( N ` B ) ) | 
						
							| 21 | 1 3 | nvcl |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( N ` B ) e. RR ) | 
						
							| 22 | 21 | recnd |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( N ` B ) e. CC ) | 
						
							| 23 | 22 | mullidd |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( 1 x. ( N ` B ) ) = ( N ` B ) ) | 
						
							| 24 | 20 23 | eqtrid |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( ( abs ` -u 1 ) x. ( N ` B ) ) = ( N ` B ) ) | 
						
							| 25 | 15 24 | eqtr2d |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( N ` B ) = ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) | 
						
							| 26 | 25 | 3adant2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` B ) = ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` A ) + ( N ` B ) ) = ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) B ) ) ) ) | 
						
							| 28 | 11 13 27 | 3brtr4d |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) |