Step |
Hyp |
Ref |
Expression |
1 |
|
nvmul0or.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nvmul0or.4 |
|- S = ( .sOLD ` U ) |
3 |
|
nvmul0or.6 |
|- Z = ( 0vec ` U ) |
4 |
|
df-ne |
|- ( A =/= 0 <-> -. A = 0 ) |
5 |
|
oveq2 |
|- ( ( A S B ) = Z -> ( ( 1 / A ) S ( A S B ) ) = ( ( 1 / A ) S Z ) ) |
6 |
5
|
ad2antlr |
|- ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> ( ( 1 / A ) S ( A S B ) ) = ( ( 1 / A ) S Z ) ) |
7 |
|
recid2 |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / A ) x. A ) = 1 ) |
8 |
7
|
oveq1d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( 1 / A ) x. A ) S B ) = ( 1 S B ) ) |
9 |
8
|
3ad2antl2 |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( ( 1 / A ) x. A ) S B ) = ( 1 S B ) ) |
10 |
|
simpl1 |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> U e. NrmCVec ) |
11 |
|
reccl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
12 |
11
|
3ad2antl2 |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
13 |
|
simpl2 |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> A e. CC ) |
14 |
|
simpl3 |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> B e. X ) |
15 |
1 2
|
nvsass |
|- ( ( U e. NrmCVec /\ ( ( 1 / A ) e. CC /\ A e. CC /\ B e. X ) ) -> ( ( ( 1 / A ) x. A ) S B ) = ( ( 1 / A ) S ( A S B ) ) ) |
16 |
10 12 13 14 15
|
syl13anc |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( ( 1 / A ) x. A ) S B ) = ( ( 1 / A ) S ( A S B ) ) ) |
17 |
1 2
|
nvsid |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) |
18 |
17
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( 1 S B ) = B ) |
19 |
18
|
adantr |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( 1 S B ) = B ) |
20 |
9 16 19
|
3eqtr3d |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( 1 / A ) S ( A S B ) ) = B ) |
21 |
20
|
adantlr |
|- ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> ( ( 1 / A ) S ( A S B ) ) = B ) |
22 |
2 3
|
nvsz |
|- ( ( U e. NrmCVec /\ ( 1 / A ) e. CC ) -> ( ( 1 / A ) S Z ) = Z ) |
23 |
11 22
|
sylan2 |
|- ( ( U e. NrmCVec /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( 1 / A ) S Z ) = Z ) |
24 |
23
|
anassrs |
|- ( ( ( U e. NrmCVec /\ A e. CC ) /\ A =/= 0 ) -> ( ( 1 / A ) S Z ) = Z ) |
25 |
24
|
3adantl3 |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( 1 / A ) S Z ) = Z ) |
26 |
25
|
adantlr |
|- ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> ( ( 1 / A ) S Z ) = Z ) |
27 |
6 21 26
|
3eqtr3d |
|- ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> B = Z ) |
28 |
27
|
ex |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) -> ( A =/= 0 -> B = Z ) ) |
29 |
4 28
|
syl5bir |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) -> ( -. A = 0 -> B = Z ) ) |
30 |
29
|
orrd |
|- ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) -> ( A = 0 \/ B = Z ) ) |
31 |
30
|
ex |
|- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( ( A S B ) = Z -> ( A = 0 \/ B = Z ) ) ) |
32 |
1 2 3
|
nv0 |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( 0 S B ) = Z ) |
33 |
|
oveq1 |
|- ( A = 0 -> ( A S B ) = ( 0 S B ) ) |
34 |
33
|
eqeq1d |
|- ( A = 0 -> ( ( A S B ) = Z <-> ( 0 S B ) = Z ) ) |
35 |
32 34
|
syl5ibrcom |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( A = 0 -> ( A S B ) = Z ) ) |
36 |
35
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( A = 0 -> ( A S B ) = Z ) ) |
37 |
2 3
|
nvsz |
|- ( ( U e. NrmCVec /\ A e. CC ) -> ( A S Z ) = Z ) |
38 |
|
oveq2 |
|- ( B = Z -> ( A S B ) = ( A S Z ) ) |
39 |
38
|
eqeq1d |
|- ( B = Z -> ( ( A S B ) = Z <-> ( A S Z ) = Z ) ) |
40 |
37 39
|
syl5ibrcom |
|- ( ( U e. NrmCVec /\ A e. CC ) -> ( B = Z -> ( A S B ) = Z ) ) |
41 |
40
|
3adant3 |
|- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( B = Z -> ( A S B ) = Z ) ) |
42 |
36 41
|
jaod |
|- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( ( A = 0 \/ B = Z ) -> ( A S B ) = Z ) ) |
43 |
31 42
|
impbid |
|- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( ( A S B ) = Z <-> ( A = 0 \/ B = Z ) ) ) |