| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvmul0or.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nvmul0or.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 3 |  | nvmul0or.6 |  |-  Z = ( 0vec ` U ) | 
						
							| 4 |  | df-ne |  |-  ( A =/= 0 <-> -. A = 0 ) | 
						
							| 5 |  | oveq2 |  |-  ( ( A S B ) = Z -> ( ( 1 / A ) S ( A S B ) ) = ( ( 1 / A ) S Z ) ) | 
						
							| 6 | 5 | ad2antlr |  |-  ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> ( ( 1 / A ) S ( A S B ) ) = ( ( 1 / A ) S Z ) ) | 
						
							| 7 |  | recid2 |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / A ) x. A ) = 1 ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( ( 1 / A ) x. A ) S B ) = ( 1 S B ) ) | 
						
							| 9 | 8 | 3ad2antl2 |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( ( 1 / A ) x. A ) S B ) = ( 1 S B ) ) | 
						
							| 10 |  | simpl1 |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> U e. NrmCVec ) | 
						
							| 11 |  | reccl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) | 
						
							| 12 | 11 | 3ad2antl2 |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( 1 / A ) e. CC ) | 
						
							| 13 |  | simpl2 |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> A e. CC ) | 
						
							| 14 |  | simpl3 |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> B e. X ) | 
						
							| 15 | 1 2 | nvsass |  |-  ( ( U e. NrmCVec /\ ( ( 1 / A ) e. CC /\ A e. CC /\ B e. X ) ) -> ( ( ( 1 / A ) x. A ) S B ) = ( ( 1 / A ) S ( A S B ) ) ) | 
						
							| 16 | 10 12 13 14 15 | syl13anc |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( ( 1 / A ) x. A ) S B ) = ( ( 1 / A ) S ( A S B ) ) ) | 
						
							| 17 | 1 2 | nvsid |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) | 
						
							| 18 | 17 | 3adant2 |  |-  ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( 1 S B ) = B ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( 1 S B ) = B ) | 
						
							| 20 | 9 16 19 | 3eqtr3d |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( 1 / A ) S ( A S B ) ) = B ) | 
						
							| 21 | 20 | adantlr |  |-  ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> ( ( 1 / A ) S ( A S B ) ) = B ) | 
						
							| 22 | 2 3 | nvsz |  |-  ( ( U e. NrmCVec /\ ( 1 / A ) e. CC ) -> ( ( 1 / A ) S Z ) = Z ) | 
						
							| 23 | 11 22 | sylan2 |  |-  ( ( U e. NrmCVec /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( 1 / A ) S Z ) = Z ) | 
						
							| 24 | 23 | anassrs |  |-  ( ( ( U e. NrmCVec /\ A e. CC ) /\ A =/= 0 ) -> ( ( 1 / A ) S Z ) = Z ) | 
						
							| 25 | 24 | 3adantl3 |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ A =/= 0 ) -> ( ( 1 / A ) S Z ) = Z ) | 
						
							| 26 | 25 | adantlr |  |-  ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> ( ( 1 / A ) S Z ) = Z ) | 
						
							| 27 | 6 21 26 | 3eqtr3d |  |-  ( ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) /\ A =/= 0 ) -> B = Z ) | 
						
							| 28 | 27 | ex |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) -> ( A =/= 0 -> B = Z ) ) | 
						
							| 29 | 4 28 | biimtrrid |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) -> ( -. A = 0 -> B = Z ) ) | 
						
							| 30 | 29 | orrd |  |-  ( ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) /\ ( A S B ) = Z ) -> ( A = 0 \/ B = Z ) ) | 
						
							| 31 | 30 | ex |  |-  ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( ( A S B ) = Z -> ( A = 0 \/ B = Z ) ) ) | 
						
							| 32 | 1 2 3 | nv0 |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( 0 S B ) = Z ) | 
						
							| 33 |  | oveq1 |  |-  ( A = 0 -> ( A S B ) = ( 0 S B ) ) | 
						
							| 34 | 33 | eqeq1d |  |-  ( A = 0 -> ( ( A S B ) = Z <-> ( 0 S B ) = Z ) ) | 
						
							| 35 | 32 34 | syl5ibrcom |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( A = 0 -> ( A S B ) = Z ) ) | 
						
							| 36 | 35 | 3adant2 |  |-  ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( A = 0 -> ( A S B ) = Z ) ) | 
						
							| 37 | 2 3 | nvsz |  |-  ( ( U e. NrmCVec /\ A e. CC ) -> ( A S Z ) = Z ) | 
						
							| 38 |  | oveq2 |  |-  ( B = Z -> ( A S B ) = ( A S Z ) ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( B = Z -> ( ( A S B ) = Z <-> ( A S Z ) = Z ) ) | 
						
							| 40 | 37 39 | syl5ibrcom |  |-  ( ( U e. NrmCVec /\ A e. CC ) -> ( B = Z -> ( A S B ) = Z ) ) | 
						
							| 41 | 40 | 3adant3 |  |-  ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( B = Z -> ( A S B ) = Z ) ) | 
						
							| 42 | 36 41 | jaod |  |-  ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( ( A = 0 \/ B = Z ) -> ( A S B ) = Z ) ) | 
						
							| 43 | 31 42 | impbid |  |-  ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( ( A S B ) = Z <-> ( A = 0 \/ B = Z ) ) ) |