| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvnegneg.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nvnegneg.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 3 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 4 | 1 2 | nvscl |  |-  ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 S A ) e. X ) | 
						
							| 5 | 3 4 | mp3an2 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) e. X ) | 
						
							| 6 |  | eqid |  |-  ( +v ` U ) = ( +v ` U ) | 
						
							| 7 |  | eqid |  |-  ( inv ` ( +v ` U ) ) = ( inv ` ( +v ` U ) ) | 
						
							| 8 | 1 6 2 7 | nvinv |  |-  ( ( U e. NrmCVec /\ ( -u 1 S A ) e. X ) -> ( -u 1 S ( -u 1 S A ) ) = ( ( inv ` ( +v ` U ) ) ` ( -u 1 S A ) ) ) | 
						
							| 9 | 5 8 | syldan |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S ( -u 1 S A ) ) = ( ( inv ` ( +v ` U ) ) ` ( -u 1 S A ) ) ) | 
						
							| 10 | 1 6 2 7 | nvinv |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) = ( ( inv ` ( +v ` U ) ) ` A ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( inv ` ( +v ` U ) ) ` ( -u 1 S A ) ) = ( ( inv ` ( +v ` U ) ) ` ( ( inv ` ( +v ` U ) ) ` A ) ) ) | 
						
							| 12 | 6 | nvgrp |  |-  ( U e. NrmCVec -> ( +v ` U ) e. GrpOp ) | 
						
							| 13 | 1 6 | bafval |  |-  X = ran ( +v ` U ) | 
						
							| 14 | 13 7 | grpo2inv |  |-  ( ( ( +v ` U ) e. GrpOp /\ A e. X ) -> ( ( inv ` ( +v ` U ) ) ` ( ( inv ` ( +v ` U ) ) ` A ) ) = A ) | 
						
							| 15 | 12 14 | sylan |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( inv ` ( +v ` U ) ) ` ( ( inv ` ( +v ` U ) ) ` A ) ) = A ) | 
						
							| 16 | 9 11 15 | 3eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S ( -u 1 S A ) ) = A ) |