| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvpncan2.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nvpncan2.2 |  |-  G = ( +v ` U ) | 
						
							| 3 |  | nvpncan2.3 |  |-  M = ( -v ` U ) | 
						
							| 4 |  | simprl |  |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> A e. X ) | 
						
							| 5 |  | simprr |  |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> B e. X ) | 
						
							| 6 | 4 5 5 | 3jca |  |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A e. X /\ B e. X /\ B e. X ) ) | 
						
							| 7 | 1 2 3 | nvaddsub |  |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ B e. X ) ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) ) | 
						
							| 8 | 6 7 | syldan |  |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) ) | 
						
							| 9 | 8 | 3impb |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) ) | 
						
							| 10 | 1 2 3 | nvpncan |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M B ) = A ) | 
						
							| 11 | 9 10 | eqtr3d |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A M B ) G B ) = A ) |