Metamath Proof Explorer


Theorem nvnpcan

Description: Cancellation law for a normed complex vector space. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvpncan2.1
|- X = ( BaseSet ` U )
nvpncan2.2
|- G = ( +v ` U )
nvpncan2.3
|- M = ( -v ` U )
Assertion nvnpcan
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A M B ) G B ) = A )

Proof

Step Hyp Ref Expression
1 nvpncan2.1
 |-  X = ( BaseSet ` U )
2 nvpncan2.2
 |-  G = ( +v ` U )
3 nvpncan2.3
 |-  M = ( -v ` U )
4 simprl
 |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> A e. X )
5 simprr
 |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> B e. X )
6 4 5 5 3jca
 |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A e. X /\ B e. X /\ B e. X ) )
7 1 2 3 nvaddsub
 |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ B e. X ) ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) )
8 6 7 syldan
 |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) )
9 8 3impb
 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) )
10 1 2 3 nvpncan
 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M B ) = A )
11 9 10 eqtr3d
 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A M B ) G B ) = A )