Description: Two ways to express a zero operator. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nvo00.1 | |- X = ( BaseSet ` U ) |
|
Assertion | nvo00 | |- ( ( U e. NrmCVec /\ T : X --> Y ) -> ( T = ( X X. { Z } ) <-> ran T = { Z } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvo00.1 | |- X = ( BaseSet ` U ) |
|
2 | ffn | |- ( T : X --> Y -> T Fn X ) |
|
3 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
4 | 1 3 | nvzcl | |- ( U e. NrmCVec -> ( 0vec ` U ) e. X ) |
5 | 4 | ne0d | |- ( U e. NrmCVec -> X =/= (/) ) |
6 | fconst5 | |- ( ( T Fn X /\ X =/= (/) ) -> ( T = ( X X. { Z } ) <-> ran T = { Z } ) ) |
|
7 | 2 5 6 | syl2anr | |- ( ( U e. NrmCVec /\ T : X --> Y ) -> ( T = ( X X. { Z } ) <-> ran T = { Z } ) ) |