Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> y = ( F ` z ) ) |
2 |
|
simpll |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> F : A --> A ) |
3 |
|
simprl |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> z e. A ) |
4 |
2 3
|
ffvelrnd |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> ( F ` z ) e. A ) |
5 |
1 4
|
eqeltrd |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> y e. A ) |
6 |
1
|
fveq2d |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> ( F ` y ) = ( F ` ( F ` z ) ) ) |
7 |
|
2fveq3 |
|- ( x = z -> ( F ` ( F ` x ) ) = ( F ` ( F ` z ) ) ) |
8 |
|
id |
|- ( x = z -> x = z ) |
9 |
7 8
|
eqeq12d |
|- ( x = z -> ( ( F ` ( F ` x ) ) = x <-> ( F ` ( F ` z ) ) = z ) ) |
10 |
|
simplr |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> A. x e. A ( F ` ( F ` x ) ) = x ) |
11 |
9 10 3
|
rspcdva |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> ( F ` ( F ` z ) ) = z ) |
12 |
6 11
|
eqtr2d |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> z = ( F ` y ) ) |
13 |
5 12
|
jca |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> ( y e. A /\ z = ( F ` y ) ) ) |
14 |
|
simprr |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> z = ( F ` y ) ) |
15 |
|
simpll |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> F : A --> A ) |
16 |
|
simprl |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> y e. A ) |
17 |
15 16
|
ffvelrnd |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> ( F ` y ) e. A ) |
18 |
14 17
|
eqeltrd |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> z e. A ) |
19 |
14
|
fveq2d |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> ( F ` z ) = ( F ` ( F ` y ) ) ) |
20 |
|
2fveq3 |
|- ( x = y -> ( F ` ( F ` x ) ) = ( F ` ( F ` y ) ) ) |
21 |
|
id |
|- ( x = y -> x = y ) |
22 |
20 21
|
eqeq12d |
|- ( x = y -> ( ( F ` ( F ` x ) ) = x <-> ( F ` ( F ` y ) ) = y ) ) |
23 |
|
simplr |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> A. x e. A ( F ` ( F ` x ) ) = x ) |
24 |
22 23 16
|
rspcdva |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> ( F ` ( F ` y ) ) = y ) |
25 |
19 24
|
eqtr2d |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> y = ( F ` z ) ) |
26 |
18 25
|
jca |
|- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> ( z e. A /\ y = ( F ` z ) ) ) |
27 |
13 26
|
impbida |
|- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> ( ( z e. A /\ y = ( F ` z ) ) <-> ( y e. A /\ z = ( F ` y ) ) ) ) |
28 |
27
|
mptcnv |
|- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> `' ( z e. A |-> ( F ` z ) ) = ( y e. A |-> ( F ` y ) ) ) |
29 |
|
ffn |
|- ( F : A --> A -> F Fn A ) |
30 |
|
dffn5 |
|- ( F Fn A <-> F = ( z e. A |-> ( F ` z ) ) ) |
31 |
30
|
biimpi |
|- ( F Fn A -> F = ( z e. A |-> ( F ` z ) ) ) |
32 |
31
|
adantr |
|- ( ( F Fn A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> F = ( z e. A |-> ( F ` z ) ) ) |
33 |
29 32
|
sylan |
|- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> F = ( z e. A |-> ( F ` z ) ) ) |
34 |
33
|
cnveqd |
|- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> `' F = `' ( z e. A |-> ( F ` z ) ) ) |
35 |
|
dffn5 |
|- ( F Fn A <-> F = ( y e. A |-> ( F ` y ) ) ) |
36 |
35
|
biimpi |
|- ( F Fn A -> F = ( y e. A |-> ( F ` y ) ) ) |
37 |
36
|
adantr |
|- ( ( F Fn A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> F = ( y e. A |-> ( F ` y ) ) ) |
38 |
29 37
|
sylan |
|- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> F = ( y e. A |-> ( F ` y ) ) ) |
39 |
28 34 38
|
3eqtr4d |
|- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> `' F = F ) |