Step |
Hyp |
Ref |
Expression |
1 |
|
nvop.2 |
|- G = ( +v ` U ) |
2 |
|
nvop.4 |
|- S = ( .sOLD ` U ) |
3 |
|
nvop.6 |
|- N = ( normCV ` U ) |
4 |
|
nvrel |
|- Rel NrmCVec |
5 |
|
1st2nd |
|- ( ( Rel NrmCVec /\ U e. NrmCVec ) -> U = <. ( 1st ` U ) , ( 2nd ` U ) >. ) |
6 |
4 5
|
mpan |
|- ( U e. NrmCVec -> U = <. ( 1st ` U ) , ( 2nd ` U ) >. ) |
7 |
3
|
nmcvfval |
|- N = ( 2nd ` U ) |
8 |
7
|
opeq2i |
|- <. ( 1st ` U ) , N >. = <. ( 1st ` U ) , ( 2nd ` U ) >. |
9 |
|
eqid |
|- ( 1st ` U ) = ( 1st ` U ) |
10 |
9 1 2
|
nvvop |
|- ( U e. NrmCVec -> ( 1st ` U ) = <. G , S >. ) |
11 |
10
|
opeq1d |
|- ( U e. NrmCVec -> <. ( 1st ` U ) , N >. = <. <. G , S >. , N >. ) |
12 |
8 11
|
eqtr3id |
|- ( U e. NrmCVec -> <. ( 1st ` U ) , ( 2nd ` U ) >. = <. <. G , S >. , N >. ) |
13 |
6 12
|
eqtrd |
|- ( U e. NrmCVec -> U = <. <. G , S >. , N >. ) |