| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvop.2 |  |-  G = ( +v ` U ) | 
						
							| 2 |  | nvop.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 3 |  | nvop.6 |  |-  N = ( normCV ` U ) | 
						
							| 4 |  | nvrel |  |-  Rel NrmCVec | 
						
							| 5 |  | 1st2nd |  |-  ( ( Rel NrmCVec /\ U e. NrmCVec ) -> U = <. ( 1st ` U ) , ( 2nd ` U ) >. ) | 
						
							| 6 | 4 5 | mpan |  |-  ( U e. NrmCVec -> U = <. ( 1st ` U ) , ( 2nd ` U ) >. ) | 
						
							| 7 | 3 | nmcvfval |  |-  N = ( 2nd ` U ) | 
						
							| 8 | 7 | opeq2i |  |-  <. ( 1st ` U ) , N >. = <. ( 1st ` U ) , ( 2nd ` U ) >. | 
						
							| 9 |  | eqid |  |-  ( 1st ` U ) = ( 1st ` U ) | 
						
							| 10 | 9 1 2 | nvvop |  |-  ( U e. NrmCVec -> ( 1st ` U ) = <. G , S >. ) | 
						
							| 11 | 10 | opeq1d |  |-  ( U e. NrmCVec -> <. ( 1st ` U ) , N >. = <. <. G , S >. , N >. ) | 
						
							| 12 | 8 11 | eqtr3id |  |-  ( U e. NrmCVec -> <. ( 1st ` U ) , ( 2nd ` U ) >. = <. <. G , S >. , N >. ) | 
						
							| 13 | 6 12 | eqtrd |  |-  ( U e. NrmCVec -> U = <. <. G , S >. , N >. ) |