| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvdif.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nvdif.2 |  |-  G = ( +v ` U ) | 
						
							| 3 |  | nvdif.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 4 |  | nvdif.6 |  |-  N = ( normCV ` U ) | 
						
							| 5 |  | simp1 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> U e. NrmCVec ) | 
						
							| 6 |  | ax-icn |  |-  _i e. CC | 
						
							| 7 | 1 3 | nvscl |  |-  ( ( U e. NrmCVec /\ _i e. CC /\ B e. X ) -> ( _i S B ) e. X ) | 
						
							| 8 | 6 7 | mp3an2 |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( _i S B ) e. X ) | 
						
							| 9 | 8 | 3adant2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i S B ) e. X ) | 
						
							| 10 | 1 2 | nvgcl |  |-  ( ( U e. NrmCVec /\ A e. X /\ ( _i S B ) e. X ) -> ( A G ( _i S B ) ) e. X ) | 
						
							| 11 | 9 10 | syld3an3 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( _i S B ) ) e. X ) | 
						
							| 12 | 1 4 | nvcl |  |-  ( ( U e. NrmCVec /\ ( A G ( _i S B ) ) e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. RR ) | 
						
							| 13 | 5 11 12 | syl2anc |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. CC ) | 
						
							| 15 | 14 | mullidd |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( N ` ( A G ( _i S B ) ) ) ) = ( N ` ( A G ( _i S B ) ) ) ) | 
						
							| 16 | 6 | absnegi |  |-  ( abs ` -u _i ) = ( abs ` _i ) | 
						
							| 17 |  | absi |  |-  ( abs ` _i ) = 1 | 
						
							| 18 | 16 17 | eqtri |  |-  ( abs ` -u _i ) = 1 | 
						
							| 19 | 18 | oveq1i |  |-  ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) = ( 1 x. ( N ` ( A G ( _i S B ) ) ) ) | 
						
							| 20 |  | negicn |  |-  -u _i e. CC | 
						
							| 21 | 1 3 4 | nvs |  |-  ( ( U e. NrmCVec /\ -u _i e. CC /\ ( A G ( _i S B ) ) e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) ) | 
						
							| 22 | 20 21 | mp3an2 |  |-  ( ( U e. NrmCVec /\ ( A G ( _i S B ) ) e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) ) | 
						
							| 23 | 5 11 22 | syl2anc |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) ) | 
						
							| 24 |  | simp2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> A e. X ) | 
						
							| 25 | 1 2 3 | nvdi |  |-  ( ( U e. NrmCVec /\ ( -u _i e. CC /\ A e. X /\ ( _i S B ) e. X ) ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) ) | 
						
							| 26 | 20 25 | mp3anr1 |  |-  ( ( U e. NrmCVec /\ ( A e. X /\ ( _i S B ) e. X ) ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) ) | 
						
							| 27 | 5 24 9 26 | syl12anc |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) ) | 
						
							| 28 | 6 6 | mulneg1i |  |-  ( -u _i x. _i ) = -u ( _i x. _i ) | 
						
							| 29 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 30 | 29 | negeqi |  |-  -u ( _i x. _i ) = -u -u 1 | 
						
							| 31 |  | negneg1e1 |  |-  -u -u 1 = 1 | 
						
							| 32 | 30 31 | eqtri |  |-  -u ( _i x. _i ) = 1 | 
						
							| 33 | 28 32 | eqtri |  |-  ( -u _i x. _i ) = 1 | 
						
							| 34 | 33 | oveq1i |  |-  ( ( -u _i x. _i ) S B ) = ( 1 S B ) | 
						
							| 35 | 1 3 | nvsass |  |-  ( ( U e. NrmCVec /\ ( -u _i e. CC /\ _i e. CC /\ B e. X ) ) -> ( ( -u _i x. _i ) S B ) = ( -u _i S ( _i S B ) ) ) | 
						
							| 36 | 20 35 | mp3anr1 |  |-  ( ( U e. NrmCVec /\ ( _i e. CC /\ B e. X ) ) -> ( ( -u _i x. _i ) S B ) = ( -u _i S ( _i S B ) ) ) | 
						
							| 37 | 6 36 | mpanr1 |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( ( -u _i x. _i ) S B ) = ( -u _i S ( _i S B ) ) ) | 
						
							| 38 | 1 3 | nvsid |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) | 
						
							| 39 | 34 37 38 | 3eqtr3a |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( -u _i S ( _i S B ) ) = B ) | 
						
							| 40 | 39 | 3adant2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S ( _i S B ) ) = B ) | 
						
							| 41 | 40 | oveq2d |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) = ( ( -u _i S A ) G B ) ) | 
						
							| 42 | 1 3 | nvscl |  |-  ( ( U e. NrmCVec /\ -u _i e. CC /\ A e. X ) -> ( -u _i S A ) e. X ) | 
						
							| 43 | 20 42 | mp3an2 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( -u _i S A ) e. X ) | 
						
							| 44 | 43 | 3adant3 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S A ) e. X ) | 
						
							| 45 | 1 2 | nvcom |  |-  ( ( U e. NrmCVec /\ ( -u _i S A ) e. X /\ B e. X ) -> ( ( -u _i S A ) G B ) = ( B G ( -u _i S A ) ) ) | 
						
							| 46 | 44 45 | syld3an2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( -u _i S A ) G B ) = ( B G ( -u _i S A ) ) ) | 
						
							| 47 | 27 41 46 | 3eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( B G ( -u _i S A ) ) ) | 
						
							| 48 | 47 | fveq2d |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) | 
						
							| 49 | 23 48 | eqtr3d |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) | 
						
							| 50 | 19 49 | eqtr3id |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( N ` ( A G ( _i S B ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) | 
						
							| 51 | 15 50 | eqtr3d |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) |