Step |
Hyp |
Ref |
Expression |
1 |
|
nvdif.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nvdif.2 |
|- G = ( +v ` U ) |
3 |
|
nvdif.4 |
|- S = ( .sOLD ` U ) |
4 |
|
nvdif.6 |
|- N = ( normCV ` U ) |
5 |
|
simp1 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> U e. NrmCVec ) |
6 |
|
ax-icn |
|- _i e. CC |
7 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ _i e. CC /\ B e. X ) -> ( _i S B ) e. X ) |
8 |
6 7
|
mp3an2 |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( _i S B ) e. X ) |
9 |
8
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i S B ) e. X ) |
10 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ ( _i S B ) e. X ) -> ( A G ( _i S B ) ) e. X ) |
11 |
9 10
|
syld3an3 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( _i S B ) ) e. X ) |
12 |
1 4
|
nvcl |
|- ( ( U e. NrmCVec /\ ( A G ( _i S B ) ) e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. RR ) |
13 |
5 11 12
|
syl2anc |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. RR ) |
14 |
13
|
recnd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. CC ) |
15 |
14
|
mulid2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( N ` ( A G ( _i S B ) ) ) ) = ( N ` ( A G ( _i S B ) ) ) ) |
16 |
6
|
absnegi |
|- ( abs ` -u _i ) = ( abs ` _i ) |
17 |
|
absi |
|- ( abs ` _i ) = 1 |
18 |
16 17
|
eqtri |
|- ( abs ` -u _i ) = 1 |
19 |
18
|
oveq1i |
|- ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) = ( 1 x. ( N ` ( A G ( _i S B ) ) ) ) |
20 |
|
negicn |
|- -u _i e. CC |
21 |
1 3 4
|
nvs |
|- ( ( U e. NrmCVec /\ -u _i e. CC /\ ( A G ( _i S B ) ) e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) ) |
22 |
20 21
|
mp3an2 |
|- ( ( U e. NrmCVec /\ ( A G ( _i S B ) ) e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) ) |
23 |
5 11 22
|
syl2anc |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) ) |
24 |
|
simp2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> A e. X ) |
25 |
1 2 3
|
nvdi |
|- ( ( U e. NrmCVec /\ ( -u _i e. CC /\ A e. X /\ ( _i S B ) e. X ) ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) ) |
26 |
20 25
|
mp3anr1 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ ( _i S B ) e. X ) ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) ) |
27 |
5 24 9 26
|
syl12anc |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) ) |
28 |
6 6
|
mulneg1i |
|- ( -u _i x. _i ) = -u ( _i x. _i ) |
29 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
30 |
29
|
negeqi |
|- -u ( _i x. _i ) = -u -u 1 |
31 |
|
negneg1e1 |
|- -u -u 1 = 1 |
32 |
30 31
|
eqtri |
|- -u ( _i x. _i ) = 1 |
33 |
28 32
|
eqtri |
|- ( -u _i x. _i ) = 1 |
34 |
33
|
oveq1i |
|- ( ( -u _i x. _i ) S B ) = ( 1 S B ) |
35 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( -u _i e. CC /\ _i e. CC /\ B e. X ) ) -> ( ( -u _i x. _i ) S B ) = ( -u _i S ( _i S B ) ) ) |
36 |
20 35
|
mp3anr1 |
|- ( ( U e. NrmCVec /\ ( _i e. CC /\ B e. X ) ) -> ( ( -u _i x. _i ) S B ) = ( -u _i S ( _i S B ) ) ) |
37 |
6 36
|
mpanr1 |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( ( -u _i x. _i ) S B ) = ( -u _i S ( _i S B ) ) ) |
38 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) |
39 |
34 37 38
|
3eqtr3a |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( -u _i S ( _i S B ) ) = B ) |
40 |
39
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S ( _i S B ) ) = B ) |
41 |
40
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) = ( ( -u _i S A ) G B ) ) |
42 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u _i e. CC /\ A e. X ) -> ( -u _i S A ) e. X ) |
43 |
20 42
|
mp3an2 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( -u _i S A ) e. X ) |
44 |
43
|
3adant3 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S A ) e. X ) |
45 |
1 2
|
nvcom |
|- ( ( U e. NrmCVec /\ ( -u _i S A ) e. X /\ B e. X ) -> ( ( -u _i S A ) G B ) = ( B G ( -u _i S A ) ) ) |
46 |
44 45
|
syld3an2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( -u _i S A ) G B ) = ( B G ( -u _i S A ) ) ) |
47 |
27 41 46
|
3eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( B G ( -u _i S A ) ) ) |
48 |
47
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) |
49 |
23 48
|
eqtr3d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) |
50 |
19 49
|
eqtr3id |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( N ` ( A G ( _i S B ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) |
51 |
15 50
|
eqtr3d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) |