| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvpncan2.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nvpncan2.2 |  |-  G = ( +v ` U ) | 
						
							| 3 |  | nvpncan2.3 |  |-  M = ( -v ` U ) | 
						
							| 4 | 1 2 | nvcom |  |-  ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B G A ) = ( A G B ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( ( B G A ) M B ) = ( ( A G B ) M B ) ) | 
						
							| 6 | 1 2 3 | nvpncan2 |  |-  ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( ( B G A ) M B ) = A ) | 
						
							| 7 | 5 6 | eqtr3d |  |-  ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( ( A G B ) M B ) = A ) | 
						
							| 8 | 7 | 3com23 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M B ) = A ) |