| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvpncan2.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nvpncan2.2 |  |-  G = ( +v ` U ) | 
						
							| 3 |  | nvpncan2.3 |  |-  M = ( -v ` U ) | 
						
							| 4 |  | simp1 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> U e. NrmCVec ) | 
						
							| 5 | 1 2 | nvgcl |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) | 
						
							| 6 |  | simp2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> A e. X ) | 
						
							| 7 |  | eqid |  |-  ( .sOLD ` U ) = ( .sOLD ` U ) | 
						
							| 8 | 1 2 7 3 | nvmval |  |-  ( ( U e. NrmCVec /\ ( A G B ) e. X /\ A e. X ) -> ( ( A G B ) M A ) = ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) ) | 
						
							| 9 | 4 5 6 8 | syl3anc |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M A ) = ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) ) | 
						
							| 10 |  | simp3 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> B e. X ) | 
						
							| 11 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 12 | 1 7 | nvscl |  |-  ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) | 
						
							| 13 | 11 12 | mp3an2 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) | 
						
							| 14 | 13 | 3adant3 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) | 
						
							| 15 | 1 2 | nvadd32 |  |-  ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ ( -u 1 ( .sOLD ` U ) A ) e. X ) ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) ) | 
						
							| 16 | 4 6 10 14 15 | syl13anc |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) ) | 
						
							| 17 |  | eqid |  |-  ( 0vec ` U ) = ( 0vec ` U ) | 
						
							| 18 | 1 2 7 17 | nvrinv |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 ( .sOLD ` U ) A ) ) = ( 0vec ` U ) ) | 
						
							| 19 | 18 | 3adant3 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( -u 1 ( .sOLD ` U ) A ) ) = ( 0vec ` U ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) = ( ( 0vec ` U ) G B ) ) | 
						
							| 21 | 1 2 17 | nv0lid |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( ( 0vec ` U ) G B ) = B ) | 
						
							| 22 | 21 | 3adant2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( 0vec ` U ) G B ) = B ) | 
						
							| 23 | 20 22 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) = B ) | 
						
							| 24 | 16 23 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) = B ) | 
						
							| 25 | 9 24 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M A ) = B ) |