Step |
Hyp |
Ref |
Expression |
1 |
|
nvpncan2.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nvpncan2.2 |
|- G = ( +v ` U ) |
3 |
|
nvpncan2.3 |
|- M = ( -v ` U ) |
4 |
|
simp1 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> U e. NrmCVec ) |
5 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
6 |
|
simp2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> A e. X ) |
7 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
8 |
1 2 7 3
|
nvmval |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X /\ A e. X ) -> ( ( A G B ) M A ) = ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) ) |
9 |
4 5 6 8
|
syl3anc |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M A ) = ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) ) |
10 |
|
simp3 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> B e. X ) |
11 |
|
neg1cn |
|- -u 1 e. CC |
12 |
1 7
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) |
13 |
11 12
|
mp3an2 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) |
14 |
13
|
3adant3 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) |
15 |
1 2
|
nvadd32 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ ( -u 1 ( .sOLD ` U ) A ) e. X ) ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) ) |
16 |
4 6 10 14 15
|
syl13anc |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) ) |
17 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
18 |
1 2 7 17
|
nvrinv |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 ( .sOLD ` U ) A ) ) = ( 0vec ` U ) ) |
19 |
18
|
3adant3 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( -u 1 ( .sOLD ` U ) A ) ) = ( 0vec ` U ) ) |
20 |
19
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) = ( ( 0vec ` U ) G B ) ) |
21 |
1 2 17
|
nv0lid |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( ( 0vec ` U ) G B ) = B ) |
22 |
21
|
3adant2 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( 0vec ` U ) G B ) = B ) |
23 |
20 22
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) = B ) |
24 |
16 23
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) = B ) |
25 |
9 24
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M A ) = B ) |