Description: The class of all normed complex vectors spaces is a relation. (Contributed by NM, 14-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nvrel | |- Rel NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvss | |- NrmCVec C_ ( CVecOLD X. _V ) |
|
| 2 | relxp | |- Rel ( CVecOLD X. _V ) |
|
| 3 | relss | |- ( NrmCVec C_ ( CVecOLD X. _V ) -> ( Rel ( CVecOLD X. _V ) -> Rel NrmCVec ) ) |
|
| 4 | 1 2 3 | mp2 | |- Rel NrmCVec |