Metamath Proof Explorer


Theorem nvrinv

Description: A vector minus itself. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvrinv.1
|- X = ( BaseSet ` U )
nvrinv.2
|- G = ( +v ` U )
nvrinv.4
|- S = ( .sOLD ` U )
nvrinv.6
|- Z = ( 0vec ` U )
Assertion nvrinv
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = Z )

Proof

Step Hyp Ref Expression
1 nvrinv.1
 |-  X = ( BaseSet ` U )
2 nvrinv.2
 |-  G = ( +v ` U )
3 nvrinv.4
 |-  S = ( .sOLD ` U )
4 nvrinv.6
 |-  Z = ( 0vec ` U )
5 2 nvgrp
 |-  ( U e. NrmCVec -> G e. GrpOp )
6 1 2 bafval
 |-  X = ran G
7 eqid
 |-  ( GId ` G ) = ( GId ` G )
8 eqid
 |-  ( inv ` G ) = ( inv ` G )
9 6 7 8 grporinv
 |-  ( ( G e. GrpOp /\ A e. X ) -> ( A G ( ( inv ` G ) ` A ) ) = ( GId ` G ) )
10 5 9 sylan
 |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( ( inv ` G ) ` A ) ) = ( GId ` G ) )
11 1 2 3 8 nvinv
 |-  ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) = ( ( inv ` G ) ` A ) )
12 11 oveq2d
 |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = ( A G ( ( inv ` G ) ` A ) ) )
13 2 4 0vfval
 |-  ( U e. NrmCVec -> Z = ( GId ` G ) )
14 13 adantr
 |-  ( ( U e. NrmCVec /\ A e. X ) -> Z = ( GId ` G ) )
15 10 12 14 3eqtr4d
 |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = Z )