| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nvscl.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
nvscl.4 |
|- S = ( .sOLD ` U ) |
| 3 |
|
eqid |
|- ( 1st ` U ) = ( 1st ` U ) |
| 4 |
3
|
nvvc |
|- ( U e. NrmCVec -> ( 1st ` U ) e. CVecOLD ) |
| 5 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
| 6 |
5
|
vafval |
|- ( +v ` U ) = ( 1st ` ( 1st ` U ) ) |
| 7 |
2
|
smfval |
|- S = ( 2nd ` ( 1st ` U ) ) |
| 8 |
1 5
|
bafval |
|- X = ran ( +v ` U ) |
| 9 |
6 7 8
|
vcass |
|- ( ( ( 1st ` U ) e. CVecOLD /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) |
| 10 |
4 9
|
sylan |
|- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) |