| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvscl.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nvscl.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 3 |  | mulcom |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 4 | 3 | oveq1d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) S C ) = ( ( B x. A ) S C ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( A e. CC /\ B e. CC /\ C e. X ) -> ( ( A x. B ) S C ) = ( ( B x. A ) S C ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( ( B x. A ) S C ) ) | 
						
							| 7 | 1 2 | nvsass |  |-  ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) | 
						
							| 8 |  | 3ancoma |  |-  ( ( A e. CC /\ B e. CC /\ C e. X ) <-> ( B e. CC /\ A e. CC /\ C e. X ) ) | 
						
							| 9 | 1 2 | nvsass |  |-  ( ( U e. NrmCVec /\ ( B e. CC /\ A e. CC /\ C e. X ) ) -> ( ( B x. A ) S C ) = ( B S ( A S C ) ) ) | 
						
							| 10 | 8 9 | sylan2b |  |-  ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( B x. A ) S C ) = ( B S ( A S C ) ) ) | 
						
							| 11 | 6 7 10 | 3eqtr3d |  |-  ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( A S ( B S C ) ) = ( B S ( A S C ) ) ) |