| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvsz.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 2 |  | nvsz.6 |  |-  Z = ( 0vec ` U ) | 
						
							| 3 |  | eqid |  |-  ( 1st ` U ) = ( 1st ` U ) | 
						
							| 4 | 3 | nvvc |  |-  ( U e. NrmCVec -> ( 1st ` U ) e. CVecOLD ) | 
						
							| 5 |  | eqid |  |-  ( +v ` U ) = ( +v ` U ) | 
						
							| 6 | 5 | vafval |  |-  ( +v ` U ) = ( 1st ` ( 1st ` U ) ) | 
						
							| 7 | 1 | smfval |  |-  S = ( 2nd ` ( 1st ` U ) ) | 
						
							| 8 |  | eqid |  |-  ( BaseSet ` U ) = ( BaseSet ` U ) | 
						
							| 9 | 8 5 | bafval |  |-  ( BaseSet ` U ) = ran ( +v ` U ) | 
						
							| 10 |  | eqid |  |-  ( GId ` ( +v ` U ) ) = ( GId ` ( +v ` U ) ) | 
						
							| 11 | 6 7 9 10 | vcz |  |-  ( ( ( 1st ` U ) e. CVecOLD /\ A e. CC ) -> ( A S ( GId ` ( +v ` U ) ) ) = ( GId ` ( +v ` U ) ) ) | 
						
							| 12 | 4 11 | sylan |  |-  ( ( U e. NrmCVec /\ A e. CC ) -> ( A S ( GId ` ( +v ` U ) ) ) = ( GId ` ( +v ` U ) ) ) | 
						
							| 13 | 5 2 | 0vfval |  |-  ( U e. NrmCVec -> Z = ( GId ` ( +v ` U ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( U e. NrmCVec /\ A e. CC ) -> Z = ( GId ` ( +v ` U ) ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( ( U e. NrmCVec /\ A e. CC ) -> ( A S Z ) = ( A S ( GId ` ( +v ` U ) ) ) ) | 
						
							| 16 | 12 15 14 | 3eqtr4d |  |-  ( ( U e. NrmCVec /\ A e. CC ) -> ( A S Z ) = Z ) |