Step |
Hyp |
Ref |
Expression |
1 |
|
nvvc.1 |
|- W = ( 1st ` U ) |
2 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
3 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
4 |
1 2 3
|
nvvop |
|- ( U e. NrmCVec -> W = <. ( +v ` U ) , ( .sOLD ` U ) >. ) |
5 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
6 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
7 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
8 |
5 2 3 6 7
|
nvi |
|- ( U e. NrmCVec -> ( <. ( +v ` U ) , ( .sOLD ` U ) >. e. CVecOLD /\ ( normCV ` U ) : ( BaseSet ` U ) --> RR /\ A. x e. ( BaseSet ` U ) ( ( ( ( normCV ` U ) ` x ) = 0 -> x = ( 0vec ` U ) ) /\ A. y e. CC ( ( normCV ` U ) ` ( y ( .sOLD ` U ) x ) ) = ( ( abs ` y ) x. ( ( normCV ` U ) ` x ) ) /\ A. y e. ( BaseSet ` U ) ( ( normCV ` U ) ` ( x ( +v ` U ) y ) ) <_ ( ( ( normCV ` U ) ` x ) + ( ( normCV ` U ) ` y ) ) ) ) ) |
9 |
8
|
simp1d |
|- ( U e. NrmCVec -> <. ( +v ` U ) , ( .sOLD ` U ) >. e. CVecOLD ) |
10 |
4 9
|
eqeltrd |
|- ( U e. NrmCVec -> W e. CVecOLD ) |