Step |
Hyp |
Ref |
Expression |
1 |
|
nvz.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nvz.5 |
|- Z = ( 0vec ` U ) |
3 |
|
nvz.6 |
|- N = ( normCV ` U ) |
4 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
5 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
6 |
1 4 5 2 3
|
nvi |
|- ( U e. NrmCVec -> ( <. ( +v ` U ) , ( .sOLD ` U ) >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y ( .sOLD ` U ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
7 |
6
|
simp3d |
|- ( U e. NrmCVec -> A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y ( .sOLD ` U ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) |
8 |
|
simp1 |
|- ( ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y ( .sOLD ` U ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) -> ( ( N ` x ) = 0 -> x = Z ) ) |
9 |
8
|
ralimi |
|- ( A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y ( .sOLD ` U ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) -> A. x e. X ( ( N ` x ) = 0 -> x = Z ) ) |
10 |
|
fveqeq2 |
|- ( x = A -> ( ( N ` x ) = 0 <-> ( N ` A ) = 0 ) ) |
11 |
|
eqeq1 |
|- ( x = A -> ( x = Z <-> A = Z ) ) |
12 |
10 11
|
imbi12d |
|- ( x = A -> ( ( ( N ` x ) = 0 -> x = Z ) <-> ( ( N ` A ) = 0 -> A = Z ) ) ) |
13 |
12
|
rspccv |
|- ( A. x e. X ( ( N ` x ) = 0 -> x = Z ) -> ( A e. X -> ( ( N ` A ) = 0 -> A = Z ) ) ) |
14 |
7 9 13
|
3syl |
|- ( U e. NrmCVec -> ( A e. X -> ( ( N ` A ) = 0 -> A = Z ) ) ) |
15 |
14
|
imp |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) = 0 -> A = Z ) ) |
16 |
|
fveq2 |
|- ( A = Z -> ( N ` A ) = ( N ` Z ) ) |
17 |
2 3
|
nvz0 |
|- ( U e. NrmCVec -> ( N ` Z ) = 0 ) |
18 |
16 17
|
sylan9eqr |
|- ( ( U e. NrmCVec /\ A = Z ) -> ( N ` A ) = 0 ) |
19 |
18
|
ex |
|- ( U e. NrmCVec -> ( A = Z -> ( N ` A ) = 0 ) ) |
20 |
19
|
adantr |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A = Z -> ( N ` A ) = 0 ) ) |
21 |
15 20
|
impbid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = Z ) ) |