| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nvz0.5 |  |-  Z = ( 0vec ` U ) | 
						
							| 2 |  | nvz0.6 |  |-  N = ( normCV ` U ) | 
						
							| 3 |  | eqid |  |-  ( BaseSet ` U ) = ( BaseSet ` U ) | 
						
							| 4 | 3 1 | nvzcl |  |-  ( U e. NrmCVec -> Z e. ( BaseSet ` U ) ) | 
						
							| 5 |  | 0re |  |-  0 e. RR | 
						
							| 6 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 7 | 5 6 | pm3.2i |  |-  ( 0 e. RR /\ 0 <_ 0 ) | 
						
							| 8 |  | eqid |  |-  ( .sOLD ` U ) = ( .sOLD ` U ) | 
						
							| 9 | 3 8 2 | nvsge0 |  |-  ( ( U e. NrmCVec /\ ( 0 e. RR /\ 0 <_ 0 ) /\ Z e. ( BaseSet ` U ) ) -> ( N ` ( 0 ( .sOLD ` U ) Z ) ) = ( 0 x. ( N ` Z ) ) ) | 
						
							| 10 | 7 9 | mp3an2 |  |-  ( ( U e. NrmCVec /\ Z e. ( BaseSet ` U ) ) -> ( N ` ( 0 ( .sOLD ` U ) Z ) ) = ( 0 x. ( N ` Z ) ) ) | 
						
							| 11 | 4 10 | mpdan |  |-  ( U e. NrmCVec -> ( N ` ( 0 ( .sOLD ` U ) Z ) ) = ( 0 x. ( N ` Z ) ) ) | 
						
							| 12 | 3 8 1 | nv0 |  |-  ( ( U e. NrmCVec /\ Z e. ( BaseSet ` U ) ) -> ( 0 ( .sOLD ` U ) Z ) = Z ) | 
						
							| 13 | 4 12 | mpdan |  |-  ( U e. NrmCVec -> ( 0 ( .sOLD ` U ) Z ) = Z ) | 
						
							| 14 | 13 | fveq2d |  |-  ( U e. NrmCVec -> ( N ` ( 0 ( .sOLD ` U ) Z ) ) = ( N ` Z ) ) | 
						
							| 15 | 3 2 | nvcl |  |-  ( ( U e. NrmCVec /\ Z e. ( BaseSet ` U ) ) -> ( N ` Z ) e. RR ) | 
						
							| 16 | 15 | recnd |  |-  ( ( U e. NrmCVec /\ Z e. ( BaseSet ` U ) ) -> ( N ` Z ) e. CC ) | 
						
							| 17 | 4 16 | mpdan |  |-  ( U e. NrmCVec -> ( N ` Z ) e. CC ) | 
						
							| 18 | 17 | mul02d |  |-  ( U e. NrmCVec -> ( 0 x. ( N ` Z ) ) = 0 ) | 
						
							| 19 | 11 14 18 | 3eqtr3d |  |-  ( U e. NrmCVec -> ( N ` Z ) = 0 ) |