| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nznngen.n |
|- ( ph -> N e. ZZ ) |
| 2 |
|
reldvds |
|- Rel || |
| 3 |
|
relimasn |
|- ( Rel || -> ( || " { N } ) = { x | N || x } ) |
| 4 |
2 3
|
ax-mp |
|- ( || " { N } ) = { x | N || x } |
| 5 |
4
|
ineq1i |
|- ( ( || " { N } ) i^i NN ) = ( { x | N || x } i^i NN ) |
| 6 |
|
dfrab2 |
|- { x e. NN | N || x } = ( { x | N || x } i^i NN ) |
| 7 |
5 6
|
eqtr4i |
|- ( ( || " { N } ) i^i NN ) = { x e. NN | N || x } |
| 8 |
7
|
eleq2i |
|- ( x e. ( ( || " { N } ) i^i NN ) <-> x e. { x e. NN | N || x } ) |
| 9 |
|
rabid |
|- ( x e. { x e. NN | N || x } <-> ( x e. NN /\ N || x ) ) |
| 10 |
|
nnz |
|- ( x e. NN -> x e. ZZ ) |
| 11 |
|
absdvdsb |
|- ( ( N e. ZZ /\ x e. ZZ ) -> ( N || x <-> ( abs ` N ) || x ) ) |
| 12 |
1 10 11
|
syl2an |
|- ( ( ph /\ x e. NN ) -> ( N || x <-> ( abs ` N ) || x ) ) |
| 13 |
|
zabscl |
|- ( N e. ZZ -> ( abs ` N ) e. ZZ ) |
| 14 |
1 13
|
syl |
|- ( ph -> ( abs ` N ) e. ZZ ) |
| 15 |
|
dvdsle |
|- ( ( ( abs ` N ) e. ZZ /\ x e. NN ) -> ( ( abs ` N ) || x -> ( abs ` N ) <_ x ) ) |
| 16 |
14 15
|
sylan |
|- ( ( ph /\ x e. NN ) -> ( ( abs ` N ) || x -> ( abs ` N ) <_ x ) ) |
| 17 |
12 16
|
sylbid |
|- ( ( ph /\ x e. NN ) -> ( N || x -> ( abs ` N ) <_ x ) ) |
| 18 |
17
|
impr |
|- ( ( ph /\ ( x e. NN /\ N || x ) ) -> ( abs ` N ) <_ x ) |
| 19 |
9 18
|
sylan2b |
|- ( ( ph /\ x e. { x e. NN | N || x } ) -> ( abs ` N ) <_ x ) |
| 20 |
9
|
simplbi |
|- ( x e. { x e. NN | N || x } -> x e. NN ) |
| 21 |
20
|
nnzd |
|- ( x e. { x e. NN | N || x } -> x e. ZZ ) |
| 22 |
|
eluz |
|- ( ( ( abs ` N ) e. ZZ /\ x e. ZZ ) -> ( x e. ( ZZ>= ` ( abs ` N ) ) <-> ( abs ` N ) <_ x ) ) |
| 23 |
14 21 22
|
syl2an |
|- ( ( ph /\ x e. { x e. NN | N || x } ) -> ( x e. ( ZZ>= ` ( abs ` N ) ) <-> ( abs ` N ) <_ x ) ) |
| 24 |
19 23
|
mpbird |
|- ( ( ph /\ x e. { x e. NN | N || x } ) -> x e. ( ZZ>= ` ( abs ` N ) ) ) |
| 25 |
8 24
|
sylan2b |
|- ( ( ph /\ x e. ( ( || " { N } ) i^i NN ) ) -> x e. ( ZZ>= ` ( abs ` N ) ) ) |
| 26 |
25
|
ex |
|- ( ph -> ( x e. ( ( || " { N } ) i^i NN ) -> x e. ( ZZ>= ` ( abs ` N ) ) ) ) |
| 27 |
26
|
ssrdv |
|- ( ph -> ( ( || " { N } ) i^i NN ) C_ ( ZZ>= ` ( abs ` N ) ) ) |