Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isnzr.o | |- .1. = ( 1r ` R ) |
|
isnzr.z | |- .0. = ( 0g ` R ) |
||
Assertion | nzrnz | |- ( R e. NzRing -> .1. =/= .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnzr.o | |- .1. = ( 1r ` R ) |
|
2 | isnzr.z | |- .0. = ( 0g ` R ) |
|
3 | 1 2 | isnzr | |- ( R e. NzRing <-> ( R e. Ring /\ .1. =/= .0. ) ) |
4 | 3 | simprbi | |- ( R e. NzRing -> .1. =/= .0. ) |