| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nzrpropd.1 |  |-  ( ph -> B = ( Base ` K ) ) | 
						
							| 2 |  | nzrpropd.2 |  |-  ( ph -> B = ( Base ` L ) ) | 
						
							| 3 |  | nzrpropd.3 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) | 
						
							| 4 |  | nzrpropd.4 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) | 
						
							| 5 | 1 2 3 4 | ringpropd |  |-  ( ph -> ( K e. Ring <-> L e. Ring ) ) | 
						
							| 6 | 1 2 4 | rngidpropd |  |-  ( ph -> ( 1r ` K ) = ( 1r ` L ) ) | 
						
							| 7 | 1 2 3 | grpidpropd |  |-  ( ph -> ( 0g ` K ) = ( 0g ` L ) ) | 
						
							| 8 | 6 7 | neeq12d |  |-  ( ph -> ( ( 1r ` K ) =/= ( 0g ` K ) <-> ( 1r ` L ) =/= ( 0g ` L ) ) ) | 
						
							| 9 | 5 8 | anbi12d |  |-  ( ph -> ( ( K e. Ring /\ ( 1r ` K ) =/= ( 0g ` K ) ) <-> ( L e. Ring /\ ( 1r ` L ) =/= ( 0g ` L ) ) ) ) | 
						
							| 10 |  | eqid |  |-  ( 1r ` K ) = ( 1r ` K ) | 
						
							| 11 |  | eqid |  |-  ( 0g ` K ) = ( 0g ` K ) | 
						
							| 12 | 10 11 | isnzr |  |-  ( K e. NzRing <-> ( K e. Ring /\ ( 1r ` K ) =/= ( 0g ` K ) ) ) | 
						
							| 13 |  | eqid |  |-  ( 1r ` L ) = ( 1r ` L ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` L ) = ( 0g ` L ) | 
						
							| 15 | 13 14 | isnzr |  |-  ( L e. NzRing <-> ( L e. Ring /\ ( 1r ` L ) =/= ( 0g ` L ) ) ) | 
						
							| 16 | 9 12 15 | 3bitr4g |  |-  ( ph -> ( K e. NzRing <-> L e. NzRing ) ) |