Step |
Hyp |
Ref |
Expression |
1 |
|
nzrpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
2 |
|
nzrpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
3 |
|
nzrpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
4 |
|
nzrpropd.4 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
5 |
1 2 3 4
|
ringpropd |
|- ( ph -> ( K e. Ring <-> L e. Ring ) ) |
6 |
1 2 4
|
rngidpropd |
|- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |
7 |
1 2 3
|
grpidpropd |
|- ( ph -> ( 0g ` K ) = ( 0g ` L ) ) |
8 |
6 7
|
neeq12d |
|- ( ph -> ( ( 1r ` K ) =/= ( 0g ` K ) <-> ( 1r ` L ) =/= ( 0g ` L ) ) ) |
9 |
5 8
|
anbi12d |
|- ( ph -> ( ( K e. Ring /\ ( 1r ` K ) =/= ( 0g ` K ) ) <-> ( L e. Ring /\ ( 1r ` L ) =/= ( 0g ` L ) ) ) ) |
10 |
|
eqid |
|- ( 1r ` K ) = ( 1r ` K ) |
11 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
12 |
10 11
|
isnzr |
|- ( K e. NzRing <-> ( K e. Ring /\ ( 1r ` K ) =/= ( 0g ` K ) ) ) |
13 |
|
eqid |
|- ( 1r ` L ) = ( 1r ` L ) |
14 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
15 |
13 14
|
isnzr |
|- ( L e. NzRing <-> ( L e. Ring /\ ( 1r ` L ) =/= ( 0g ` L ) ) ) |
16 |
9 12 15
|
3bitr4g |
|- ( ph -> ( K e. NzRing <-> L e. NzRing ) ) |