Metamath Proof Explorer


Theorem nzrpropd

Description: If two structures have the same components (properties), one is a nonzero ring iff the other one is. (Contributed by SN, 21-Jun-2025)

Ref Expression
Hypotheses nzrpropd.1
|- ( ph -> B = ( Base ` K ) )
nzrpropd.2
|- ( ph -> B = ( Base ` L ) )
nzrpropd.3
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) )
nzrpropd.4
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) )
Assertion nzrpropd
|- ( ph -> ( K e. NzRing <-> L e. NzRing ) )

Proof

Step Hyp Ref Expression
1 nzrpropd.1
 |-  ( ph -> B = ( Base ` K ) )
2 nzrpropd.2
 |-  ( ph -> B = ( Base ` L ) )
3 nzrpropd.3
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) )
4 nzrpropd.4
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) )
5 1 2 3 4 ringpropd
 |-  ( ph -> ( K e. Ring <-> L e. Ring ) )
6 1 2 4 rngidpropd
 |-  ( ph -> ( 1r ` K ) = ( 1r ` L ) )
7 1 2 3 grpidpropd
 |-  ( ph -> ( 0g ` K ) = ( 0g ` L ) )
8 6 7 neeq12d
 |-  ( ph -> ( ( 1r ` K ) =/= ( 0g ` K ) <-> ( 1r ` L ) =/= ( 0g ` L ) ) )
9 5 8 anbi12d
 |-  ( ph -> ( ( K e. Ring /\ ( 1r ` K ) =/= ( 0g ` K ) ) <-> ( L e. Ring /\ ( 1r ` L ) =/= ( 0g ` L ) ) ) )
10 eqid
 |-  ( 1r ` K ) = ( 1r ` K )
11 eqid
 |-  ( 0g ` K ) = ( 0g ` K )
12 10 11 isnzr
 |-  ( K e. NzRing <-> ( K e. Ring /\ ( 1r ` K ) =/= ( 0g ` K ) ) )
13 eqid
 |-  ( 1r ` L ) = ( 1r ` L )
14 eqid
 |-  ( 0g ` L ) = ( 0g ` L )
15 13 14 isnzr
 |-  ( L e. NzRing <-> ( L e. Ring /\ ( 1r ` L ) =/= ( 0g ` L ) ) )
16 9 12 15 3bitr4g
 |-  ( ph -> ( K e. NzRing <-> L e. NzRing ) )