Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015) (Proof shortened by SN, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nzrring | |- ( R e. NzRing -> R e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nzr | |- NzRing = { r e. Ring | ( 1r ` r ) =/= ( 0g ` r ) } |
|
| 2 | 1 | ssrab3 | |- NzRing C_ Ring |
| 3 | 2 | sseli | |- ( R e. NzRing -> R e. Ring ) |