Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nzrring | |- ( R e. NzRing -> R e. Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
2 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
3 | 1 2 | isnzr | |- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
4 | 3 | simplbi | |- ( R e. NzRing -> R e. Ring ) |