| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nzrunit.1 |
|- U = ( Unit ` R ) |
| 2 |
|
nzrunit.2 |
|- .0. = ( 0g ` R ) |
| 3 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 4 |
3 2
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
| 5 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 6 |
1 2 3
|
0unit |
|- ( R e. Ring -> ( .0. e. U <-> ( 1r ` R ) = .0. ) ) |
| 7 |
6
|
necon3bbid |
|- ( R e. Ring -> ( -. .0. e. U <-> ( 1r ` R ) =/= .0. ) ) |
| 8 |
5 7
|
syl |
|- ( R e. NzRing -> ( -. .0. e. U <-> ( 1r ` R ) =/= .0. ) ) |
| 9 |
4 8
|
mpbird |
|- ( R e. NzRing -> -. .0. e. U ) |
| 10 |
|
eleq1 |
|- ( A = .0. -> ( A e. U <-> .0. e. U ) ) |
| 11 |
10
|
notbid |
|- ( A = .0. -> ( -. A e. U <-> -. .0. e. U ) ) |
| 12 |
9 11
|
syl5ibrcom |
|- ( R e. NzRing -> ( A = .0. -> -. A e. U ) ) |
| 13 |
12
|
necon2ad |
|- ( R e. NzRing -> ( A e. U -> A =/= .0. ) ) |
| 14 |
13
|
imp |
|- ( ( R e. NzRing /\ A e. U ) -> A =/= .0. ) |