Metamath Proof Explorer


Theorem o1const

Description: A constant function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion o1const
|- ( ( A C_ RR /\ B e. CC ) -> ( x e. A |-> B ) e. O(1) )

Proof

Step Hyp Ref Expression
1 rlimconst
 |-  ( ( A C_ RR /\ B e. CC ) -> ( x e. A |-> B ) ~~>r B )
2 rlimo1
 |-  ( ( x e. A |-> B ) ~~>r B -> ( x e. A |-> B ) e. O(1) )
3 1 2 syl
 |-  ( ( A C_ RR /\ B e. CC ) -> ( x e. A |-> B ) e. O(1) )