| Step |
Hyp |
Ref |
Expression |
| 1 |
|
o1dif.1 |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 2 |
|
o1dif.2 |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
| 3 |
|
o1dif.3 |
|- ( ph -> ( x e. A |-> ( B - C ) ) e. O(1) ) |
| 4 |
|
o1sub |
|- ( ( ( x e. A |-> B ) e. O(1) /\ ( x e. A |-> ( B - C ) ) e. O(1) ) -> ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) e. O(1) ) |
| 5 |
4
|
expcom |
|- ( ( x e. A |-> ( B - C ) ) e. O(1) -> ( ( x e. A |-> B ) e. O(1) -> ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) e. O(1) ) ) |
| 6 |
3 5
|
syl |
|- ( ph -> ( ( x e. A |-> B ) e. O(1) -> ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) e. O(1) ) ) |
| 7 |
1 2
|
subcld |
|- ( ( ph /\ x e. A ) -> ( B - C ) e. CC ) |
| 8 |
7
|
ralrimiva |
|- ( ph -> A. x e. A ( B - C ) e. CC ) |
| 9 |
|
dmmptg |
|- ( A. x e. A ( B - C ) e. CC -> dom ( x e. A |-> ( B - C ) ) = A ) |
| 10 |
8 9
|
syl |
|- ( ph -> dom ( x e. A |-> ( B - C ) ) = A ) |
| 11 |
|
o1dm |
|- ( ( x e. A |-> ( B - C ) ) e. O(1) -> dom ( x e. A |-> ( B - C ) ) C_ RR ) |
| 12 |
3 11
|
syl |
|- ( ph -> dom ( x e. A |-> ( B - C ) ) C_ RR ) |
| 13 |
10 12
|
eqsstrrd |
|- ( ph -> A C_ RR ) |
| 14 |
|
reex |
|- RR e. _V |
| 15 |
14
|
ssex |
|- ( A C_ RR -> A e. _V ) |
| 16 |
13 15
|
syl |
|- ( ph -> A e. _V ) |
| 17 |
|
eqidd |
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
| 18 |
|
eqidd |
|- ( ph -> ( x e. A |-> ( B - C ) ) = ( x e. A |-> ( B - C ) ) ) |
| 19 |
16 1 7 17 18
|
offval2 |
|- ( ph -> ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) = ( x e. A |-> ( B - ( B - C ) ) ) ) |
| 20 |
1 2
|
nncand |
|- ( ( ph /\ x e. A ) -> ( B - ( B - C ) ) = C ) |
| 21 |
20
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( B - ( B - C ) ) ) = ( x e. A |-> C ) ) |
| 22 |
19 21
|
eqtrd |
|- ( ph -> ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) = ( x e. A |-> C ) ) |
| 23 |
22
|
eleq1d |
|- ( ph -> ( ( ( x e. A |-> B ) oF - ( x e. A |-> ( B - C ) ) ) e. O(1) <-> ( x e. A |-> C ) e. O(1) ) ) |
| 24 |
6 23
|
sylibd |
|- ( ph -> ( ( x e. A |-> B ) e. O(1) -> ( x e. A |-> C ) e. O(1) ) ) |
| 25 |
|
o1add |
|- ( ( ( x e. A |-> ( B - C ) ) e. O(1) /\ ( x e. A |-> C ) e. O(1) ) -> ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) e. O(1) ) |
| 26 |
25
|
ex |
|- ( ( x e. A |-> ( B - C ) ) e. O(1) -> ( ( x e. A |-> C ) e. O(1) -> ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) e. O(1) ) ) |
| 27 |
3 26
|
syl |
|- ( ph -> ( ( x e. A |-> C ) e. O(1) -> ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) e. O(1) ) ) |
| 28 |
|
eqidd |
|- ( ph -> ( x e. A |-> C ) = ( x e. A |-> C ) ) |
| 29 |
16 7 2 18 28
|
offval2 |
|- ( ph -> ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) = ( x e. A |-> ( ( B - C ) + C ) ) ) |
| 30 |
1 2
|
npcand |
|- ( ( ph /\ x e. A ) -> ( ( B - C ) + C ) = B ) |
| 31 |
30
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( ( B - C ) + C ) ) = ( x e. A |-> B ) ) |
| 32 |
29 31
|
eqtrd |
|- ( ph -> ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) = ( x e. A |-> B ) ) |
| 33 |
32
|
eleq1d |
|- ( ph -> ( ( ( x e. A |-> ( B - C ) ) oF + ( x e. A |-> C ) ) e. O(1) <-> ( x e. A |-> B ) e. O(1) ) ) |
| 34 |
27 33
|
sylibd |
|- ( ph -> ( ( x e. A |-> C ) e. O(1) -> ( x e. A |-> B ) e. O(1) ) ) |
| 35 |
24 34
|
impbid |
|- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> C ) e. O(1) ) ) |