Step |
Hyp |
Ref |
Expression |
1 |
|
rlimeq.1 |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
2 |
|
rlimeq.2 |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
3 |
|
rlimeq.3 |
|- ( ph -> D e. RR ) |
4 |
|
rlimeq.4 |
|- ( ( ph /\ ( x e. A /\ D <_ x ) ) -> B = C ) |
5 |
1
|
abscld |
|- ( ( ph /\ x e. A ) -> ( abs ` B ) e. RR ) |
6 |
2
|
abscld |
|- ( ( ph /\ x e. A ) -> ( abs ` C ) e. RR ) |
7 |
4
|
fveq2d |
|- ( ( ph /\ ( x e. A /\ D <_ x ) ) -> ( abs ` B ) = ( abs ` C ) ) |
8 |
5 6 3 7
|
lo1eq |
|- ( ph -> ( ( x e. A |-> ( abs ` B ) ) e. <_O(1) <-> ( x e. A |-> ( abs ` C ) ) e. <_O(1) ) ) |
9 |
1
|
lo1o12 |
|- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) ) |
10 |
2
|
lo1o12 |
|- ( ph -> ( ( x e. A |-> C ) e. O(1) <-> ( x e. A |-> ( abs ` C ) ) e. <_O(1) ) ) |
11 |
8 9 10
|
3bitr4d |
|- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> C ) e. O(1) ) ) |