Metamath Proof Explorer


Theorem o1p1e2

Description: 1 + 1 = 2 for ordinal numbers. (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion o1p1e2
|- ( 1o +o 1o ) = 2o

Proof

Step Hyp Ref Expression
1 1on
 |-  1o e. On
2 oa1suc
 |-  ( 1o e. On -> ( 1o +o 1o ) = suc 1o )
3 1 2 ax-mp
 |-  ( 1o +o 1o ) = suc 1o
4 df-2o
 |-  2o = suc 1o
5 3 4 eqtr4i
 |-  ( 1o +o 1o ) = 2o