| Step | Hyp | Ref | Expression | 
						
							| 1 |  | o1add2.1 |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 2 |  | o1add2.2 |  |-  ( ( ph /\ x e. A ) -> C e. V ) | 
						
							| 3 |  | o1add2.3 |  |-  ( ph -> ( x e. A |-> B ) e. O(1) ) | 
						
							| 4 |  | o1add2.4 |  |-  ( ph -> ( x e. A |-> C ) e. O(1) ) | 
						
							| 5 | 1 | ralrimiva |  |-  ( ph -> A. x e. A B e. V ) | 
						
							| 6 |  | dmmptg |  |-  ( A. x e. A B e. V -> dom ( x e. A |-> B ) = A ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> dom ( x e. A |-> B ) = A ) | 
						
							| 8 |  | o1dm |  |-  ( ( x e. A |-> B ) e. O(1) -> dom ( x e. A |-> B ) C_ RR ) | 
						
							| 9 | 3 8 | syl |  |-  ( ph -> dom ( x e. A |-> B ) C_ RR ) | 
						
							| 10 | 7 9 | eqsstrrd |  |-  ( ph -> A C_ RR ) | 
						
							| 11 |  | reex |  |-  RR e. _V | 
						
							| 12 | 11 | ssex |  |-  ( A C_ RR -> A e. _V ) | 
						
							| 13 | 10 12 | syl |  |-  ( ph -> A e. _V ) | 
						
							| 14 |  | eqidd |  |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) | 
						
							| 15 |  | eqidd |  |-  ( ph -> ( x e. A |-> C ) = ( x e. A |-> C ) ) | 
						
							| 16 | 13 1 2 14 15 | offval2 |  |-  ( ph -> ( ( x e. A |-> B ) oF - ( x e. A |-> C ) ) = ( x e. A |-> ( B - C ) ) ) | 
						
							| 17 |  | o1sub |  |-  ( ( ( x e. A |-> B ) e. O(1) /\ ( x e. A |-> C ) e. O(1) ) -> ( ( x e. A |-> B ) oF - ( x e. A |-> C ) ) e. O(1) ) | 
						
							| 18 | 3 4 17 | syl2anc |  |-  ( ph -> ( ( x e. A |-> B ) oF - ( x e. A |-> C ) ) e. O(1) ) | 
						
							| 19 | 16 18 | eqeltrrd |  |-  ( ph -> ( x e. A |-> ( B - C ) ) e. O(1) ) |