| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2on |  |-  2o e. On | 
						
							| 2 |  | df-1o |  |-  1o = suc (/) | 
						
							| 3 |  | peano1 |  |-  (/) e. _om | 
						
							| 4 |  | peano2 |  |-  ( (/) e. _om -> suc (/) e. _om ) | 
						
							| 5 | 3 4 | ax-mp |  |-  suc (/) e. _om | 
						
							| 6 | 2 5 | eqeltri |  |-  1o e. _om | 
						
							| 7 |  | onasuc |  |-  ( ( 2o e. On /\ 1o e. _om ) -> ( 2o +o suc 1o ) = suc ( 2o +o 1o ) ) | 
						
							| 8 | 1 6 7 | mp2an |  |-  ( 2o +o suc 1o ) = suc ( 2o +o 1o ) | 
						
							| 9 |  | df-2o |  |-  2o = suc 1o | 
						
							| 10 | 9 | oveq2i |  |-  ( 2o +o 2o ) = ( 2o +o suc 1o ) | 
						
							| 11 |  | df-3o |  |-  3o = suc 2o | 
						
							| 12 |  | oa1suc |  |-  ( 2o e. On -> ( 2o +o 1o ) = suc 2o ) | 
						
							| 13 | 1 12 | ax-mp |  |-  ( 2o +o 1o ) = suc 2o | 
						
							| 14 | 11 13 | eqtr4i |  |-  3o = ( 2o +o 1o ) | 
						
							| 15 |  | suceq |  |-  ( 3o = ( 2o +o 1o ) -> suc 3o = suc ( 2o +o 1o ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  suc 3o = suc ( 2o +o 1o ) | 
						
							| 17 | 8 10 16 | 3eqtr4i |  |-  ( 2o +o 2o ) = suc 3o | 
						
							| 18 |  | df-4o |  |-  4o = suc 3o | 
						
							| 19 | 17 18 | eqtr4i |  |-  ( 2o +o 2o ) = 4o |