| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2on |
|- 2o e. On |
| 2 |
|
df-1o |
|- 1o = suc (/) |
| 3 |
|
peano1 |
|- (/) e. _om |
| 4 |
|
peano2 |
|- ( (/) e. _om -> suc (/) e. _om ) |
| 5 |
3 4
|
ax-mp |
|- suc (/) e. _om |
| 6 |
2 5
|
eqeltri |
|- 1o e. _om |
| 7 |
|
onasuc |
|- ( ( 2o e. On /\ 1o e. _om ) -> ( 2o +o suc 1o ) = suc ( 2o +o 1o ) ) |
| 8 |
1 6 7
|
mp2an |
|- ( 2o +o suc 1o ) = suc ( 2o +o 1o ) |
| 9 |
|
df-2o |
|- 2o = suc 1o |
| 10 |
9
|
oveq2i |
|- ( 2o +o 2o ) = ( 2o +o suc 1o ) |
| 11 |
|
df-3o |
|- 3o = suc 2o |
| 12 |
|
oa1suc |
|- ( 2o e. On -> ( 2o +o 1o ) = suc 2o ) |
| 13 |
1 12
|
ax-mp |
|- ( 2o +o 1o ) = suc 2o |
| 14 |
11 13
|
eqtr4i |
|- 3o = ( 2o +o 1o ) |
| 15 |
|
suceq |
|- ( 3o = ( 2o +o 1o ) -> suc 3o = suc ( 2o +o 1o ) ) |
| 16 |
14 15
|
ax-mp |
|- suc 3o = suc ( 2o +o 1o ) |
| 17 |
8 10 16
|
3eqtr4i |
|- ( 2o +o 2o ) = suc 3o |
| 18 |
|
df-4o |
|- 4o = suc 3o |
| 19 |
17 18
|
eqtr4i |
|- ( 2o +o 2o ) = 4o |