| Step | Hyp | Ref | Expression | 
						
							| 1 |  | o2timesd.e |  |-  ( ph -> A. x e. B A. y e. B A. z e. B ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) | 
						
							| 2 |  | o2timesd.u |  |-  ( ph -> .1. e. B ) | 
						
							| 3 |  | o2timesd.i |  |-  ( ph -> A. x e. B ( .1. .x. x ) = x ) | 
						
							| 4 |  | o2timesd.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | oveq2 |  |-  ( x = X -> ( .1. .x. x ) = ( .1. .x. X ) ) | 
						
							| 6 |  | id |  |-  ( x = X -> x = X ) | 
						
							| 7 | 5 6 | eqeq12d |  |-  ( x = X -> ( ( .1. .x. x ) = x <-> ( .1. .x. X ) = X ) ) | 
						
							| 8 | 7 | rspcva |  |-  ( ( X e. B /\ A. x e. B ( .1. .x. x ) = x ) -> ( .1. .x. X ) = X ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( X e. B /\ A. x e. B ( .1. .x. x ) = x ) -> X = ( .1. .x. X ) ) | 
						
							| 10 | 4 3 9 | syl2anc |  |-  ( ph -> X = ( .1. .x. X ) ) | 
						
							| 11 | 10 10 | oveq12d |  |-  ( ph -> ( X .+ X ) = ( ( .1. .x. X ) .+ ( .1. .x. X ) ) ) | 
						
							| 12 | 2 2 4 | 3jca |  |-  ( ph -> ( .1. e. B /\ .1. e. B /\ X e. B ) ) | 
						
							| 13 |  | oveq1 |  |-  ( x = .1. -> ( x .+ y ) = ( .1. .+ y ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( x = .1. -> ( ( x .+ y ) .x. z ) = ( ( .1. .+ y ) .x. z ) ) | 
						
							| 15 |  | oveq1 |  |-  ( x = .1. -> ( x .x. z ) = ( .1. .x. z ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( x = .1. -> ( ( x .x. z ) .+ ( y .x. z ) ) = ( ( .1. .x. z ) .+ ( y .x. z ) ) ) | 
						
							| 17 | 14 16 | eqeq12d |  |-  ( x = .1. -> ( ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) <-> ( ( .1. .+ y ) .x. z ) = ( ( .1. .x. z ) .+ ( y .x. z ) ) ) ) | 
						
							| 18 |  | oveq2 |  |-  ( y = .1. -> ( .1. .+ y ) = ( .1. .+ .1. ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( y = .1. -> ( ( .1. .+ y ) .x. z ) = ( ( .1. .+ .1. ) .x. z ) ) | 
						
							| 20 |  | oveq1 |  |-  ( y = .1. -> ( y .x. z ) = ( .1. .x. z ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( y = .1. -> ( ( .1. .x. z ) .+ ( y .x. z ) ) = ( ( .1. .x. z ) .+ ( .1. .x. z ) ) ) | 
						
							| 22 | 19 21 | eqeq12d |  |-  ( y = .1. -> ( ( ( .1. .+ y ) .x. z ) = ( ( .1. .x. z ) .+ ( y .x. z ) ) <-> ( ( .1. .+ .1. ) .x. z ) = ( ( .1. .x. z ) .+ ( .1. .x. z ) ) ) ) | 
						
							| 23 |  | oveq2 |  |-  ( z = X -> ( ( .1. .+ .1. ) .x. z ) = ( ( .1. .+ .1. ) .x. X ) ) | 
						
							| 24 |  | oveq2 |  |-  ( z = X -> ( .1. .x. z ) = ( .1. .x. X ) ) | 
						
							| 25 | 24 24 | oveq12d |  |-  ( z = X -> ( ( .1. .x. z ) .+ ( .1. .x. z ) ) = ( ( .1. .x. X ) .+ ( .1. .x. X ) ) ) | 
						
							| 26 | 23 25 | eqeq12d |  |-  ( z = X -> ( ( ( .1. .+ .1. ) .x. z ) = ( ( .1. .x. z ) .+ ( .1. .x. z ) ) <-> ( ( .1. .+ .1. ) .x. X ) = ( ( .1. .x. X ) .+ ( .1. .x. X ) ) ) ) | 
						
							| 27 | 17 22 26 | rspc3v |  |-  ( ( .1. e. B /\ .1. e. B /\ X e. B ) -> ( A. x e. B A. y e. B A. z e. B ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) -> ( ( .1. .+ .1. ) .x. X ) = ( ( .1. .x. X ) .+ ( .1. .x. X ) ) ) ) | 
						
							| 28 | 12 1 27 | sylc |  |-  ( ph -> ( ( .1. .+ .1. ) .x. X ) = ( ( .1. .x. X ) .+ ( .1. .x. X ) ) ) | 
						
							| 29 | 11 28 | eqtr4d |  |-  ( ph -> ( X .+ X ) = ( ( .1. .+ .1. ) .x. X ) ) |