Step |
Hyp |
Ref |
Expression |
1 |
|
on0eln0 |
|- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
2 |
1
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. A <-> A =/= (/) ) ) |
3 |
|
oaword1 |
|- ( ( A e. On /\ B e. On ) -> A C_ ( A +o B ) ) |
4 |
3
|
sseld |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. A -> (/) e. ( A +o B ) ) ) |
5 |
2 4
|
sylbird |
|- ( ( A e. On /\ B e. On ) -> ( A =/= (/) -> (/) e. ( A +o B ) ) ) |
6 |
|
ne0i |
|- ( (/) e. ( A +o B ) -> ( A +o B ) =/= (/) ) |
7 |
5 6
|
syl6 |
|- ( ( A e. On /\ B e. On ) -> ( A =/= (/) -> ( A +o B ) =/= (/) ) ) |
8 |
7
|
necon4d |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) -> A = (/) ) ) |
9 |
|
on0eln0 |
|- ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) |
10 |
9
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> B =/= (/) ) ) |
11 |
|
0elon |
|- (/) e. On |
12 |
|
oaord |
|- ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) |
13 |
11 12
|
mp3an1 |
|- ( ( B e. On /\ A e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) |
14 |
13
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) |
15 |
10 14
|
bitr3d |
|- ( ( A e. On /\ B e. On ) -> ( B =/= (/) <-> ( A +o (/) ) e. ( A +o B ) ) ) |
16 |
|
ne0i |
|- ( ( A +o (/) ) e. ( A +o B ) -> ( A +o B ) =/= (/) ) |
17 |
15 16
|
syl6bi |
|- ( ( A e. On /\ B e. On ) -> ( B =/= (/) -> ( A +o B ) =/= (/) ) ) |
18 |
17
|
necon4d |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) -> B = (/) ) ) |
19 |
8 18
|
jcad |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) -> ( A = (/) /\ B = (/) ) ) ) |
20 |
|
oveq12 |
|- ( ( A = (/) /\ B = (/) ) -> ( A +o B ) = ( (/) +o (/) ) ) |
21 |
|
oa0 |
|- ( (/) e. On -> ( (/) +o (/) ) = (/) ) |
22 |
11 21
|
ax-mp |
|- ( (/) +o (/) ) = (/) |
23 |
20 22
|
eqtrdi |
|- ( ( A = (/) /\ B = (/) ) -> ( A +o B ) = (/) ) |
24 |
19 23
|
impbid1 |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) <-> ( A = (/) /\ B = (/) ) ) ) |