| Step | Hyp | Ref | Expression | 
						
							| 1 |  | on0eln0 |  |-  ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. On /\ B e. On ) -> ( (/) e. A <-> A =/= (/) ) ) | 
						
							| 3 |  | oaword1 |  |-  ( ( A e. On /\ B e. On ) -> A C_ ( A +o B ) ) | 
						
							| 4 | 3 | sseld |  |-  ( ( A e. On /\ B e. On ) -> ( (/) e. A -> (/) e. ( A +o B ) ) ) | 
						
							| 5 | 2 4 | sylbird |  |-  ( ( A e. On /\ B e. On ) -> ( A =/= (/) -> (/) e. ( A +o B ) ) ) | 
						
							| 6 |  | ne0i |  |-  ( (/) e. ( A +o B ) -> ( A +o B ) =/= (/) ) | 
						
							| 7 | 5 6 | syl6 |  |-  ( ( A e. On /\ B e. On ) -> ( A =/= (/) -> ( A +o B ) =/= (/) ) ) | 
						
							| 8 | 7 | necon4d |  |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) -> A = (/) ) ) | 
						
							| 9 |  | on0eln0 |  |-  ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> B =/= (/) ) ) | 
						
							| 11 |  | 0elon |  |-  (/) e. On | 
						
							| 12 |  | oaord |  |-  ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) | 
						
							| 13 | 11 12 | mp3an1 |  |-  ( ( B e. On /\ A e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) | 
						
							| 14 | 13 | ancoms |  |-  ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) | 
						
							| 15 | 10 14 | bitr3d |  |-  ( ( A e. On /\ B e. On ) -> ( B =/= (/) <-> ( A +o (/) ) e. ( A +o B ) ) ) | 
						
							| 16 |  | ne0i |  |-  ( ( A +o (/) ) e. ( A +o B ) -> ( A +o B ) =/= (/) ) | 
						
							| 17 | 15 16 | biimtrdi |  |-  ( ( A e. On /\ B e. On ) -> ( B =/= (/) -> ( A +o B ) =/= (/) ) ) | 
						
							| 18 | 17 | necon4d |  |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) -> B = (/) ) ) | 
						
							| 19 | 8 18 | jcad |  |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) -> ( A = (/) /\ B = (/) ) ) ) | 
						
							| 20 |  | oveq12 |  |-  ( ( A = (/) /\ B = (/) ) -> ( A +o B ) = ( (/) +o (/) ) ) | 
						
							| 21 |  | oa0 |  |-  ( (/) e. On -> ( (/) +o (/) ) = (/) ) | 
						
							| 22 | 11 21 | ax-mp |  |-  ( (/) +o (/) ) = (/) | 
						
							| 23 | 20 22 | eqtrdi |  |-  ( ( A = (/) /\ B = (/) ) -> ( A +o B ) = (/) ) | 
						
							| 24 | 19 23 | impbid1 |  |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = (/) <-> ( A = (/) /\ B = (/) ) ) ) |