Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = (/) -> ( (/) +o x ) = ( (/) +o (/) ) ) |
2 |
|
id |
|- ( x = (/) -> x = (/) ) |
3 |
1 2
|
eqeq12d |
|- ( x = (/) -> ( ( (/) +o x ) = x <-> ( (/) +o (/) ) = (/) ) ) |
4 |
|
oveq2 |
|- ( x = y -> ( (/) +o x ) = ( (/) +o y ) ) |
5 |
|
id |
|- ( x = y -> x = y ) |
6 |
4 5
|
eqeq12d |
|- ( x = y -> ( ( (/) +o x ) = x <-> ( (/) +o y ) = y ) ) |
7 |
|
oveq2 |
|- ( x = suc y -> ( (/) +o x ) = ( (/) +o suc y ) ) |
8 |
|
id |
|- ( x = suc y -> x = suc y ) |
9 |
7 8
|
eqeq12d |
|- ( x = suc y -> ( ( (/) +o x ) = x <-> ( (/) +o suc y ) = suc y ) ) |
10 |
|
oveq2 |
|- ( x = A -> ( (/) +o x ) = ( (/) +o A ) ) |
11 |
|
id |
|- ( x = A -> x = A ) |
12 |
10 11
|
eqeq12d |
|- ( x = A -> ( ( (/) +o x ) = x <-> ( (/) +o A ) = A ) ) |
13 |
|
0elon |
|- (/) e. On |
14 |
|
oa0 |
|- ( (/) e. On -> ( (/) +o (/) ) = (/) ) |
15 |
13 14
|
ax-mp |
|- ( (/) +o (/) ) = (/) |
16 |
|
oasuc |
|- ( ( (/) e. On /\ y e. On ) -> ( (/) +o suc y ) = suc ( (/) +o y ) ) |
17 |
13 16
|
mpan |
|- ( y e. On -> ( (/) +o suc y ) = suc ( (/) +o y ) ) |
18 |
|
suceq |
|- ( ( (/) +o y ) = y -> suc ( (/) +o y ) = suc y ) |
19 |
17 18
|
sylan9eq |
|- ( ( y e. On /\ ( (/) +o y ) = y ) -> ( (/) +o suc y ) = suc y ) |
20 |
19
|
ex |
|- ( y e. On -> ( ( (/) +o y ) = y -> ( (/) +o suc y ) = suc y ) ) |
21 |
|
iuneq2 |
|- ( A. y e. x ( (/) +o y ) = y -> U_ y e. x ( (/) +o y ) = U_ y e. x y ) |
22 |
|
uniiun |
|- U. x = U_ y e. x y |
23 |
21 22
|
eqtr4di |
|- ( A. y e. x ( (/) +o y ) = y -> U_ y e. x ( (/) +o y ) = U. x ) |
24 |
|
vex |
|- x e. _V |
25 |
|
oalim |
|- ( ( (/) e. On /\ ( x e. _V /\ Lim x ) ) -> ( (/) +o x ) = U_ y e. x ( (/) +o y ) ) |
26 |
13 25
|
mpan |
|- ( ( x e. _V /\ Lim x ) -> ( (/) +o x ) = U_ y e. x ( (/) +o y ) ) |
27 |
24 26
|
mpan |
|- ( Lim x -> ( (/) +o x ) = U_ y e. x ( (/) +o y ) ) |
28 |
|
limuni |
|- ( Lim x -> x = U. x ) |
29 |
27 28
|
eqeq12d |
|- ( Lim x -> ( ( (/) +o x ) = x <-> U_ y e. x ( (/) +o y ) = U. x ) ) |
30 |
23 29
|
syl5ibr |
|- ( Lim x -> ( A. y e. x ( (/) +o y ) = y -> ( (/) +o x ) = x ) ) |
31 |
3 6 9 12 15 20 30
|
tfinds |
|- ( A e. On -> ( (/) +o A ) = A ) |