Step |
Hyp |
Ref |
Expression |
1 |
|
df-1o |
|- 1o = suc (/) |
2 |
1
|
oveq2i |
|- ( A +o 1o ) = ( A +o suc (/) ) |
3 |
|
peano1 |
|- (/) e. _om |
4 |
|
onasuc |
|- ( ( A e. On /\ (/) e. _om ) -> ( A +o suc (/) ) = suc ( A +o (/) ) ) |
5 |
3 4
|
mpan2 |
|- ( A e. On -> ( A +o suc (/) ) = suc ( A +o (/) ) ) |
6 |
2 5
|
eqtrid |
|- ( A e. On -> ( A +o 1o ) = suc ( A +o (/) ) ) |
7 |
|
oa0 |
|- ( A e. On -> ( A +o (/) ) = A ) |
8 |
|
suceq |
|- ( ( A +o (/) ) = A -> suc ( A +o (/) ) = suc A ) |
9 |
7 8
|
syl |
|- ( A e. On -> suc ( A +o (/) ) = suc A ) |
10 |
6 9
|
eqtrd |
|- ( A e. On -> ( A +o 1o ) = suc A ) |