| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssexg |  |-  ( ( _om C_ B /\ B e. On ) -> _om e. _V ) | 
						
							| 2 | 1 | ex |  |-  ( _om C_ B -> ( B e. On -> _om e. _V ) ) | 
						
							| 3 |  | omelon2 |  |-  ( _om e. _V -> _om e. On ) | 
						
							| 4 | 2 3 | syl6com |  |-  ( B e. On -> ( _om C_ B -> _om e. On ) ) | 
						
							| 5 | 4 | imp |  |-  ( ( B e. On /\ _om C_ B ) -> _om e. On ) | 
						
							| 6 | 5 | adantll |  |-  ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) -> _om e. On ) | 
						
							| 7 |  | simplr |  |-  ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) -> B e. On ) | 
						
							| 8 | 6 7 | jca |  |-  ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) -> ( _om e. On /\ B e. On ) ) | 
						
							| 9 |  | oawordeu |  |-  ( ( ( _om e. On /\ B e. On ) /\ _om C_ B ) -> E! x e. On ( _om +o x ) = B ) | 
						
							| 10 | 8 9 | sylancom |  |-  ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) -> E! x e. On ( _om +o x ) = B ) | 
						
							| 11 |  | reurex |  |-  ( E! x e. On ( _om +o x ) = B -> E. x e. On ( _om +o x ) = B ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) -> E. x e. On ( _om +o x ) = B ) | 
						
							| 13 |  | nnon |  |-  ( A e. _om -> A e. On ) | 
						
							| 14 | 13 | ad3antrrr |  |-  ( ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) /\ x e. On ) -> A e. On ) | 
						
							| 15 | 6 | adantr |  |-  ( ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) /\ x e. On ) -> _om e. On ) | 
						
							| 16 |  | simpr |  |-  ( ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) /\ x e. On ) -> x e. On ) | 
						
							| 17 |  | oaass |  |-  ( ( A e. On /\ _om e. On /\ x e. On ) -> ( ( A +o _om ) +o x ) = ( A +o ( _om +o x ) ) ) | 
						
							| 18 | 14 15 16 17 | syl3anc |  |-  ( ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) /\ x e. On ) -> ( ( A +o _om ) +o x ) = ( A +o ( _om +o x ) ) ) | 
						
							| 19 |  | simpll |  |-  ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) -> A e. _om ) | 
						
							| 20 |  | oaabslem |  |-  ( ( _om e. On /\ A e. _om ) -> ( A +o _om ) = _om ) | 
						
							| 21 | 6 19 20 | syl2anc |  |-  ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) -> ( A +o _om ) = _om ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) /\ x e. On ) -> ( A +o _om ) = _om ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) /\ x e. On ) -> ( ( A +o _om ) +o x ) = ( _om +o x ) ) | 
						
							| 24 | 18 23 | eqtr3d |  |-  ( ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) /\ x e. On ) -> ( A +o ( _om +o x ) ) = ( _om +o x ) ) | 
						
							| 25 |  | oveq2 |  |-  ( ( _om +o x ) = B -> ( A +o ( _om +o x ) ) = ( A +o B ) ) | 
						
							| 26 |  | id |  |-  ( ( _om +o x ) = B -> ( _om +o x ) = B ) | 
						
							| 27 | 25 26 | eqeq12d |  |-  ( ( _om +o x ) = B -> ( ( A +o ( _om +o x ) ) = ( _om +o x ) <-> ( A +o B ) = B ) ) | 
						
							| 28 | 24 27 | syl5ibcom |  |-  ( ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) /\ x e. On ) -> ( ( _om +o x ) = B -> ( A +o B ) = B ) ) | 
						
							| 29 | 28 | rexlimdva |  |-  ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) -> ( E. x e. On ( _om +o x ) = B -> ( A +o B ) = B ) ) | 
						
							| 30 | 12 29 | mpd |  |-  ( ( ( A e. _om /\ B e. On ) /\ _om C_ B ) -> ( A +o B ) = B ) |