| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnon |  |-  ( A e. _om -> A e. On ) | 
						
							| 2 |  | limom |  |-  Lim _om | 
						
							| 3 | 2 | jctr |  |-  ( _om e. On -> ( _om e. On /\ Lim _om ) ) | 
						
							| 4 |  | oalim |  |-  ( ( A e. On /\ ( _om e. On /\ Lim _om ) ) -> ( A +o _om ) = U_ x e. _om ( A +o x ) ) | 
						
							| 5 | 1 3 4 | syl2an |  |-  ( ( A e. _om /\ _om e. On ) -> ( A +o _om ) = U_ x e. _om ( A +o x ) ) | 
						
							| 6 |  | ordom |  |-  Ord _om | 
						
							| 7 |  | nnacl |  |-  ( ( A e. _om /\ x e. _om ) -> ( A +o x ) e. _om ) | 
						
							| 8 |  | ordelss |  |-  ( ( Ord _om /\ ( A +o x ) e. _om ) -> ( A +o x ) C_ _om ) | 
						
							| 9 | 6 7 8 | sylancr |  |-  ( ( A e. _om /\ x e. _om ) -> ( A +o x ) C_ _om ) | 
						
							| 10 | 9 | ralrimiva |  |-  ( A e. _om -> A. x e. _om ( A +o x ) C_ _om ) | 
						
							| 11 |  | iunss |  |-  ( U_ x e. _om ( A +o x ) C_ _om <-> A. x e. _om ( A +o x ) C_ _om ) | 
						
							| 12 | 10 11 | sylibr |  |-  ( A e. _om -> U_ x e. _om ( A +o x ) C_ _om ) | 
						
							| 13 | 12 | adantr |  |-  ( ( A e. _om /\ _om e. On ) -> U_ x e. _om ( A +o x ) C_ _om ) | 
						
							| 14 | 5 13 | eqsstrd |  |-  ( ( A e. _om /\ _om e. On ) -> ( A +o _om ) C_ _om ) | 
						
							| 15 | 14 | ancoms |  |-  ( ( _om e. On /\ A e. _om ) -> ( A +o _om ) C_ _om ) | 
						
							| 16 |  | oaword2 |  |-  ( ( _om e. On /\ A e. On ) -> _om C_ ( A +o _om ) ) | 
						
							| 17 | 1 16 | sylan2 |  |-  ( ( _om e. On /\ A e. _om ) -> _om C_ ( A +o _om ) ) | 
						
							| 18 | 15 17 | eqssd |  |-  ( ( _om e. On /\ A e. _om ) -> ( A +o _om ) = _om ) |