| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( x = (/) -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o (/) ) ) | 
						
							| 2 |  | oveq2 |  |-  ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( x = (/) -> ( A +o ( B +o x ) ) = ( A +o ( B +o (/) ) ) ) | 
						
							| 4 | 1 3 | eqeq12d |  |-  ( x = (/) -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( x = y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o y ) ) | 
						
							| 6 |  | oveq2 |  |-  ( x = y -> ( B +o x ) = ( B +o y ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( x = y -> ( A +o ( B +o x ) ) = ( A +o ( B +o y ) ) ) | 
						
							| 8 | 5 7 | eqeq12d |  |-  ( x = y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) ) | 
						
							| 9 |  | oveq2 |  |-  ( x = suc y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o suc y ) ) | 
						
							| 10 |  | oveq2 |  |-  ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( x = suc y -> ( A +o ( B +o x ) ) = ( A +o ( B +o suc y ) ) ) | 
						
							| 12 | 9 11 | eqeq12d |  |-  ( x = suc y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( x = C -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o C ) ) | 
						
							| 14 |  | oveq2 |  |-  ( x = C -> ( B +o x ) = ( B +o C ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( x = C -> ( A +o ( B +o x ) ) = ( A +o ( B +o C ) ) ) | 
						
							| 16 | 13 15 | eqeq12d |  |-  ( x = C -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) | 
						
							| 17 |  | oacl |  |-  ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On ) | 
						
							| 18 |  | oa0 |  |-  ( ( A +o B ) e. On -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) | 
						
							| 20 |  | oa0 |  |-  ( B e. On -> ( B +o (/) ) = B ) | 
						
							| 21 | 20 | oveq2d |  |-  ( B e. On -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( A e. On /\ B e. On ) -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) | 
						
							| 23 | 19 22 | eqtr4d |  |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) | 
						
							| 24 |  | suceq |  |-  ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) | 
						
							| 25 |  | oasuc |  |-  ( ( ( A +o B ) e. On /\ y e. On ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) | 
						
							| 26 | 17 25 | sylan |  |-  ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) | 
						
							| 27 |  | oasuc |  |-  ( ( B e. On /\ y e. On ) -> ( B +o suc y ) = suc ( B +o y ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( ( B e. On /\ y e. On ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( A e. On /\ ( B e. On /\ y e. On ) ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) | 
						
							| 30 |  | oacl |  |-  ( ( B e. On /\ y e. On ) -> ( B +o y ) e. On ) | 
						
							| 31 |  | oasuc |  |-  ( ( A e. On /\ ( B +o y ) e. On ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) | 
						
							| 32 | 30 31 | sylan2 |  |-  ( ( A e. On /\ ( B e. On /\ y e. On ) ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) | 
						
							| 33 | 29 32 | eqtrd |  |-  ( ( A e. On /\ ( B e. On /\ y e. On ) ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) | 
						
							| 34 | 33 | anassrs |  |-  ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) | 
						
							| 35 | 26 34 | eqeq12d |  |-  ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) <-> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) ) | 
						
							| 36 | 24 35 | imbitrrid |  |-  ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) | 
						
							| 37 | 36 | expcom |  |-  ( y e. On -> ( ( A e. On /\ B e. On ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) ) | 
						
							| 38 |  | iuneq2 |  |-  ( A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> U_ y e. x ( ( A +o B ) +o y ) = U_ y e. x ( A +o ( B +o y ) ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> U_ y e. x ( ( A +o B ) +o y ) = U_ y e. x ( A +o ( B +o y ) ) ) | 
						
							| 40 |  | vex |  |-  x e. _V | 
						
							| 41 |  | oalim |  |-  ( ( ( A +o B ) e. On /\ ( x e. _V /\ Lim x ) ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) | 
						
							| 42 | 40 41 | mpanr1 |  |-  ( ( ( A +o B ) e. On /\ Lim x ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) | 
						
							| 43 | 17 42 | sylan |  |-  ( ( ( A e. On /\ B e. On ) /\ Lim x ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) | 
						
							| 44 | 43 | ancoms |  |-  ( ( Lim x /\ ( A e. On /\ B e. On ) ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> ( ( A +o B ) +o x ) = U_ y e. x ( ( A +o B ) +o y ) ) | 
						
							| 46 |  | oalimcl |  |-  ( ( B e. On /\ ( x e. _V /\ Lim x ) ) -> Lim ( B +o x ) ) | 
						
							| 47 | 40 46 | mpanr1 |  |-  ( ( B e. On /\ Lim x ) -> Lim ( B +o x ) ) | 
						
							| 48 | 47 | ancoms |  |-  ( ( Lim x /\ B e. On ) -> Lim ( B +o x ) ) | 
						
							| 49 |  | ovex |  |-  ( B +o x ) e. _V | 
						
							| 50 |  | oalim |  |-  ( ( A e. On /\ ( ( B +o x ) e. _V /\ Lim ( B +o x ) ) ) -> ( A +o ( B +o x ) ) = U_ z e. ( B +o x ) ( A +o z ) ) | 
						
							| 51 | 49 50 | mpanr1 |  |-  ( ( A e. On /\ Lim ( B +o x ) ) -> ( A +o ( B +o x ) ) = U_ z e. ( B +o x ) ( A +o z ) ) | 
						
							| 52 | 48 51 | sylan2 |  |-  ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> ( A +o ( B +o x ) ) = U_ z e. ( B +o x ) ( A +o z ) ) | 
						
							| 53 |  | limelon |  |-  ( ( x e. _V /\ Lim x ) -> x e. On ) | 
						
							| 54 | 40 53 | mpan |  |-  ( Lim x -> x e. On ) | 
						
							| 55 |  | oacl |  |-  ( ( B e. On /\ x e. On ) -> ( B +o x ) e. On ) | 
						
							| 56 | 55 | ancoms |  |-  ( ( x e. On /\ B e. On ) -> ( B +o x ) e. On ) | 
						
							| 57 |  | onelon |  |-  ( ( ( B +o x ) e. On /\ z e. ( B +o x ) ) -> z e. On ) | 
						
							| 58 | 57 | ex |  |-  ( ( B +o x ) e. On -> ( z e. ( B +o x ) -> z e. On ) ) | 
						
							| 59 | 56 58 | syl |  |-  ( ( x e. On /\ B e. On ) -> ( z e. ( B +o x ) -> z e. On ) ) | 
						
							| 60 | 59 | adantld |  |-  ( ( x e. On /\ B e. On ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> z e. On ) ) | 
						
							| 61 | 60 | adantl |  |-  ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> z e. On ) ) | 
						
							| 62 |  | 0ellim |  |-  ( Lim x -> (/) e. x ) | 
						
							| 63 |  | onelss |  |-  ( B e. On -> ( z e. B -> z C_ B ) ) | 
						
							| 64 | 20 | sseq2d |  |-  ( B e. On -> ( z C_ ( B +o (/) ) <-> z C_ B ) ) | 
						
							| 65 | 63 64 | sylibrd |  |-  ( B e. On -> ( z e. B -> z C_ ( B +o (/) ) ) ) | 
						
							| 66 | 65 | imp |  |-  ( ( B e. On /\ z e. B ) -> z C_ ( B +o (/) ) ) | 
						
							| 67 |  | oveq2 |  |-  ( y = (/) -> ( B +o y ) = ( B +o (/) ) ) | 
						
							| 68 | 67 | sseq2d |  |-  ( y = (/) -> ( z C_ ( B +o y ) <-> z C_ ( B +o (/) ) ) ) | 
						
							| 69 | 68 | rspcev |  |-  ( ( (/) e. x /\ z C_ ( B +o (/) ) ) -> E. y e. x z C_ ( B +o y ) ) | 
						
							| 70 | 62 66 69 | syl2an |  |-  ( ( Lim x /\ ( B e. On /\ z e. B ) ) -> E. y e. x z C_ ( B +o y ) ) | 
						
							| 71 | 70 | expr |  |-  ( ( Lim x /\ B e. On ) -> ( z e. B -> E. y e. x z C_ ( B +o y ) ) ) | 
						
							| 72 | 71 | adantrl |  |-  ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( z e. B -> E. y e. x z C_ ( B +o y ) ) ) | 
						
							| 73 | 72 | adantrr |  |-  ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> ( z e. B -> E. y e. x z C_ ( B +o y ) ) ) | 
						
							| 74 |  | oawordex |  |-  ( ( B e. On /\ z e. On ) -> ( B C_ z <-> E. y e. On ( B +o y ) = z ) ) | 
						
							| 75 | 74 | ad2ant2l |  |-  ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( B C_ z <-> E. y e. On ( B +o y ) = z ) ) | 
						
							| 76 |  | oaord |  |-  ( ( y e. On /\ x e. On /\ B e. On ) -> ( y e. x <-> ( B +o y ) e. ( B +o x ) ) ) | 
						
							| 77 | 76 | 3expb |  |-  ( ( y e. On /\ ( x e. On /\ B e. On ) ) -> ( y e. x <-> ( B +o y ) e. ( B +o x ) ) ) | 
						
							| 78 |  | eleq1 |  |-  ( ( B +o y ) = z -> ( ( B +o y ) e. ( B +o x ) <-> z e. ( B +o x ) ) ) | 
						
							| 79 | 77 78 | sylan9bb |  |-  ( ( ( y e. On /\ ( x e. On /\ B e. On ) ) /\ ( B +o y ) = z ) -> ( y e. x <-> z e. ( B +o x ) ) ) | 
						
							| 80 | 79 | an32s |  |-  ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) -> ( y e. x <-> z e. ( B +o x ) ) ) | 
						
							| 81 | 80 | biimpar |  |-  ( ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) /\ z e. ( B +o x ) ) -> y e. x ) | 
						
							| 82 |  | eqimss2 |  |-  ( ( B +o y ) = z -> z C_ ( B +o y ) ) | 
						
							| 83 | 82 | ad3antlr |  |-  ( ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) /\ z e. ( B +o x ) ) -> z C_ ( B +o y ) ) | 
						
							| 84 | 81 83 | jca |  |-  ( ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( x e. On /\ B e. On ) ) /\ z e. ( B +o x ) ) -> ( y e. x /\ z C_ ( B +o y ) ) ) | 
						
							| 85 | 84 | anasss |  |-  ( ( ( y e. On /\ ( B +o y ) = z ) /\ ( ( x e. On /\ B e. On ) /\ z e. ( B +o x ) ) ) -> ( y e. x /\ z C_ ( B +o y ) ) ) | 
						
							| 86 | 85 | expcom |  |-  ( ( ( x e. On /\ B e. On ) /\ z e. ( B +o x ) ) -> ( ( y e. On /\ ( B +o y ) = z ) -> ( y e. x /\ z C_ ( B +o y ) ) ) ) | 
						
							| 87 | 86 | reximdv2 |  |-  ( ( ( x e. On /\ B e. On ) /\ z e. ( B +o x ) ) -> ( E. y e. On ( B +o y ) = z -> E. y e. x z C_ ( B +o y ) ) ) | 
						
							| 88 | 87 | adantrr |  |-  ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( E. y e. On ( B +o y ) = z -> E. y e. x z C_ ( B +o y ) ) ) | 
						
							| 89 | 75 88 | sylbid |  |-  ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( B C_ z -> E. y e. x z C_ ( B +o y ) ) ) | 
						
							| 90 | 89 | adantl |  |-  ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> ( B C_ z -> E. y e. x z C_ ( B +o y ) ) ) | 
						
							| 91 |  | eloni |  |-  ( z e. On -> Ord z ) | 
						
							| 92 |  | eloni |  |-  ( B e. On -> Ord B ) | 
						
							| 93 |  | ordtri2or |  |-  ( ( Ord z /\ Ord B ) -> ( z e. B \/ B C_ z ) ) | 
						
							| 94 | 91 92 93 | syl2anr |  |-  ( ( B e. On /\ z e. On ) -> ( z e. B \/ B C_ z ) ) | 
						
							| 95 | 94 | ad2ant2l |  |-  ( ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) -> ( z e. B \/ B C_ z ) ) | 
						
							| 96 | 95 | adantl |  |-  ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> ( z e. B \/ B C_ z ) ) | 
						
							| 97 | 73 90 96 | mpjaod |  |-  ( ( Lim x /\ ( ( x e. On /\ B e. On ) /\ ( z e. ( B +o x ) /\ z e. On ) ) ) -> E. y e. x z C_ ( B +o y ) ) | 
						
							| 98 | 97 | exp45 |  |-  ( Lim x -> ( ( x e. On /\ B e. On ) -> ( z e. ( B +o x ) -> ( z e. On -> E. y e. x z C_ ( B +o y ) ) ) ) ) | 
						
							| 99 | 98 | imp |  |-  ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( z e. ( B +o x ) -> ( z e. On -> E. y e. x z C_ ( B +o y ) ) ) ) | 
						
							| 100 | 99 | adantld |  |-  ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> ( z e. On -> E. y e. x z C_ ( B +o y ) ) ) ) | 
						
							| 101 | 100 | imp32 |  |-  ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) -> E. y e. x z C_ ( B +o y ) ) | 
						
							| 102 |  | simplrr |  |-  ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> z e. On ) | 
						
							| 103 |  | onelon |  |-  ( ( x e. On /\ y e. x ) -> y e. On ) | 
						
							| 104 | 103 30 | sylan2 |  |-  ( ( B e. On /\ ( x e. On /\ y e. x ) ) -> ( B +o y ) e. On ) | 
						
							| 105 | 104 | exp32 |  |-  ( B e. On -> ( x e. On -> ( y e. x -> ( B +o y ) e. On ) ) ) | 
						
							| 106 | 105 | com12 |  |-  ( x e. On -> ( B e. On -> ( y e. x -> ( B +o y ) e. On ) ) ) | 
						
							| 107 | 106 | imp31 |  |-  ( ( ( x e. On /\ B e. On ) /\ y e. x ) -> ( B +o y ) e. On ) | 
						
							| 108 | 107 | ad4ant24 |  |-  ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> ( B +o y ) e. On ) | 
						
							| 109 |  | simpll |  |-  ( ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) -> A e. On ) | 
						
							| 110 | 109 | ad2antlr |  |-  ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> A e. On ) | 
						
							| 111 |  | oaword |  |-  ( ( z e. On /\ ( B +o y ) e. On /\ A e. On ) -> ( z C_ ( B +o y ) <-> ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) | 
						
							| 112 | 102 108 110 111 | syl3anc |  |-  ( ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) /\ y e. x ) -> ( z C_ ( B +o y ) <-> ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) | 
						
							| 113 | 112 | rexbidva |  |-  ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) -> ( E. y e. x z C_ ( B +o y ) <-> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) | 
						
							| 114 | 101 113 | mpbid |  |-  ( ( ( Lim x /\ ( x e. On /\ B e. On ) ) /\ ( ( A e. On /\ z e. ( B +o x ) ) /\ z e. On ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) | 
						
							| 115 | 114 | exp32 |  |-  ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> ( z e. On -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) | 
						
							| 116 | 61 115 | mpdd |  |-  ( ( Lim x /\ ( x e. On /\ B e. On ) ) -> ( ( A e. On /\ z e. ( B +o x ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) | 
						
							| 117 | 116 | exp32 |  |-  ( Lim x -> ( x e. On -> ( B e. On -> ( ( A e. On /\ z e. ( B +o x ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) ) | 
						
							| 118 | 54 117 | mpd |  |-  ( Lim x -> ( B e. On -> ( ( A e. On /\ z e. ( B +o x ) ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) | 
						
							| 119 | 118 | exp4a |  |-  ( Lim x -> ( B e. On -> ( A e. On -> ( z e. ( B +o x ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) ) ) | 
						
							| 120 | 119 | imp31 |  |-  ( ( ( Lim x /\ B e. On ) /\ A e. On ) -> ( z e. ( B +o x ) -> E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) ) | 
						
							| 121 | 120 | ralrimiv |  |-  ( ( ( Lim x /\ B e. On ) /\ A e. On ) -> A. z e. ( B +o x ) E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) ) | 
						
							| 122 |  | iunss2 |  |-  ( A. z e. ( B +o x ) E. y e. x ( A +o z ) C_ ( A +o ( B +o y ) ) -> U_ z e. ( B +o x ) ( A +o z ) C_ U_ y e. x ( A +o ( B +o y ) ) ) | 
						
							| 123 | 121 122 | syl |  |-  ( ( ( Lim x /\ B e. On ) /\ A e. On ) -> U_ z e. ( B +o x ) ( A +o z ) C_ U_ y e. x ( A +o ( B +o y ) ) ) | 
						
							| 124 | 123 | ancoms |  |-  ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> U_ z e. ( B +o x ) ( A +o z ) C_ U_ y e. x ( A +o ( B +o y ) ) ) | 
						
							| 125 |  | oaordi |  |-  ( ( x e. On /\ B e. On ) -> ( y e. x -> ( B +o y ) e. ( B +o x ) ) ) | 
						
							| 126 | 125 | anim1d |  |-  ( ( x e. On /\ B e. On ) -> ( ( y e. x /\ w e. ( A +o ( B +o y ) ) ) -> ( ( B +o y ) e. ( B +o x ) /\ w e. ( A +o ( B +o y ) ) ) ) ) | 
						
							| 127 |  | oveq2 |  |-  ( z = ( B +o y ) -> ( A +o z ) = ( A +o ( B +o y ) ) ) | 
						
							| 128 | 127 | eleq2d |  |-  ( z = ( B +o y ) -> ( w e. ( A +o z ) <-> w e. ( A +o ( B +o y ) ) ) ) | 
						
							| 129 | 128 | rspcev |  |-  ( ( ( B +o y ) e. ( B +o x ) /\ w e. ( A +o ( B +o y ) ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) | 
						
							| 130 | 126 129 | syl6 |  |-  ( ( x e. On /\ B e. On ) -> ( ( y e. x /\ w e. ( A +o ( B +o y ) ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) ) | 
						
							| 131 | 130 | expd |  |-  ( ( x e. On /\ B e. On ) -> ( y e. x -> ( w e. ( A +o ( B +o y ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) ) ) | 
						
							| 132 | 131 | rexlimdv |  |-  ( ( x e. On /\ B e. On ) -> ( E. y e. x w e. ( A +o ( B +o y ) ) -> E. z e. ( B +o x ) w e. ( A +o z ) ) ) | 
						
							| 133 |  | eliun |  |-  ( w e. U_ y e. x ( A +o ( B +o y ) ) <-> E. y e. x w e. ( A +o ( B +o y ) ) ) | 
						
							| 134 |  | eliun |  |-  ( w e. U_ z e. ( B +o x ) ( A +o z ) <-> E. z e. ( B +o x ) w e. ( A +o z ) ) | 
						
							| 135 | 132 133 134 | 3imtr4g |  |-  ( ( x e. On /\ B e. On ) -> ( w e. U_ y e. x ( A +o ( B +o y ) ) -> w e. U_ z e. ( B +o x ) ( A +o z ) ) ) | 
						
							| 136 | 135 | ssrdv |  |-  ( ( x e. On /\ B e. On ) -> U_ y e. x ( A +o ( B +o y ) ) C_ U_ z e. ( B +o x ) ( A +o z ) ) | 
						
							| 137 | 54 136 | sylan |  |-  ( ( Lim x /\ B e. On ) -> U_ y e. x ( A +o ( B +o y ) ) C_ U_ z e. ( B +o x ) ( A +o z ) ) | 
						
							| 138 | 137 | adantl |  |-  ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> U_ y e. x ( A +o ( B +o y ) ) C_ U_ z e. ( B +o x ) ( A +o z ) ) | 
						
							| 139 | 124 138 | eqssd |  |-  ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> U_ z e. ( B +o x ) ( A +o z ) = U_ y e. x ( A +o ( B +o y ) ) ) | 
						
							| 140 | 52 139 | eqtrd |  |-  ( ( A e. On /\ ( Lim x /\ B e. On ) ) -> ( A +o ( B +o x ) ) = U_ y e. x ( A +o ( B +o y ) ) ) | 
						
							| 141 | 140 | an12s |  |-  ( ( Lim x /\ ( A e. On /\ B e. On ) ) -> ( A +o ( B +o x ) ) = U_ y e. x ( A +o ( B +o y ) ) ) | 
						
							| 142 | 141 | adantr |  |-  ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> ( A +o ( B +o x ) ) = U_ y e. x ( A +o ( B +o y ) ) ) | 
						
							| 143 | 39 45 142 | 3eqtr4d |  |-  ( ( ( Lim x /\ ( A e. On /\ B e. On ) ) /\ A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) | 
						
							| 144 | 143 | exp31 |  |-  ( Lim x -> ( ( A e. On /\ B e. On ) -> ( A. y e. x ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) ) ) | 
						
							| 145 | 4 8 12 16 23 37 144 | tfinds3 |  |-  ( C e. On -> ( ( A e. On /\ B e. On ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) | 
						
							| 146 | 145 | com12 |  |-  ( ( A e. On /\ B e. On ) -> ( C e. On -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) | 
						
							| 147 | 146 | 3impia |  |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) |