Step |
Hyp |
Ref |
Expression |
1 |
|
oaord |
|- ( ( B e. On /\ C e. On /\ A e. On ) -> ( B e. C <-> ( A +o B ) e. ( A +o C ) ) ) |
2 |
1
|
3comr |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. C <-> ( A +o B ) e. ( A +o C ) ) ) |
3 |
|
oaord |
|- ( ( C e. On /\ B e. On /\ A e. On ) -> ( C e. B <-> ( A +o C ) e. ( A +o B ) ) ) |
4 |
3
|
3com13 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C e. B <-> ( A +o C ) e. ( A +o B ) ) ) |
5 |
2 4
|
orbi12d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( B e. C \/ C e. B ) <-> ( ( A +o B ) e. ( A +o C ) \/ ( A +o C ) e. ( A +o B ) ) ) ) |
6 |
5
|
notbid |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. ( B e. C \/ C e. B ) <-> -. ( ( A +o B ) e. ( A +o C ) \/ ( A +o C ) e. ( A +o B ) ) ) ) |
7 |
|
eloni |
|- ( B e. On -> Ord B ) |
8 |
|
eloni |
|- ( C e. On -> Ord C ) |
9 |
|
ordtri3 |
|- ( ( Ord B /\ Ord C ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
10 |
7 8 9
|
syl2an |
|- ( ( B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
11 |
10
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
12 |
|
oacl |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On ) |
13 |
|
eloni |
|- ( ( A +o B ) e. On -> Ord ( A +o B ) ) |
14 |
12 13
|
syl |
|- ( ( A e. On /\ B e. On ) -> Ord ( A +o B ) ) |
15 |
|
oacl |
|- ( ( A e. On /\ C e. On ) -> ( A +o C ) e. On ) |
16 |
|
eloni |
|- ( ( A +o C ) e. On -> Ord ( A +o C ) ) |
17 |
15 16
|
syl |
|- ( ( A e. On /\ C e. On ) -> Ord ( A +o C ) ) |
18 |
|
ordtri3 |
|- ( ( Ord ( A +o B ) /\ Ord ( A +o C ) ) -> ( ( A +o B ) = ( A +o C ) <-> -. ( ( A +o B ) e. ( A +o C ) \/ ( A +o C ) e. ( A +o B ) ) ) ) |
19 |
14 17 18
|
syl2an |
|- ( ( ( A e. On /\ B e. On ) /\ ( A e. On /\ C e. On ) ) -> ( ( A +o B ) = ( A +o C ) <-> -. ( ( A +o B ) e. ( A +o C ) \/ ( A +o C ) e. ( A +o B ) ) ) ) |
20 |
19
|
3impdi |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +o B ) = ( A +o C ) <-> -. ( ( A +o B ) e. ( A +o C ) \/ ( A +o C ) e. ( A +o B ) ) ) ) |
21 |
6 11 20
|
3bitr4rd |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +o B ) = ( A +o C ) <-> B = C ) ) |