Step |
Hyp |
Ref |
Expression |
1 |
|
oacomf1olem.1 |
|- F = ( x e. A |-> ( B +o x ) ) |
2 |
|
oaf1o |
|- ( B e. On -> ( x e. On |-> ( B +o x ) ) : On -1-1-onto-> ( On \ B ) ) |
3 |
2
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( x e. On |-> ( B +o x ) ) : On -1-1-onto-> ( On \ B ) ) |
4 |
|
f1of1 |
|- ( ( x e. On |-> ( B +o x ) ) : On -1-1-onto-> ( On \ B ) -> ( x e. On |-> ( B +o x ) ) : On -1-1-> ( On \ B ) ) |
5 |
3 4
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( x e. On |-> ( B +o x ) ) : On -1-1-> ( On \ B ) ) |
6 |
|
onss |
|- ( A e. On -> A C_ On ) |
7 |
6
|
adantr |
|- ( ( A e. On /\ B e. On ) -> A C_ On ) |
8 |
|
f1ssres |
|- ( ( ( x e. On |-> ( B +o x ) ) : On -1-1-> ( On \ B ) /\ A C_ On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) ) |
9 |
5 7 8
|
syl2anc |
|- ( ( A e. On /\ B e. On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) ) |
10 |
7
|
resmptd |
|- ( ( A e. On /\ B e. On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) = ( x e. A |-> ( B +o x ) ) ) |
11 |
10 1
|
eqtr4di |
|- ( ( A e. On /\ B e. On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) = F ) |
12 |
|
f1eq1 |
|- ( ( ( x e. On |-> ( B +o x ) ) |` A ) = F -> ( ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) <-> F : A -1-1-> ( On \ B ) ) ) |
13 |
11 12
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) <-> F : A -1-1-> ( On \ B ) ) ) |
14 |
9 13
|
mpbid |
|- ( ( A e. On /\ B e. On ) -> F : A -1-1-> ( On \ B ) ) |
15 |
|
f1f1orn |
|- ( F : A -1-1-> ( On \ B ) -> F : A -1-1-onto-> ran F ) |
16 |
14 15
|
syl |
|- ( ( A e. On /\ B e. On ) -> F : A -1-1-onto-> ran F ) |
17 |
|
f1f |
|- ( F : A -1-1-> ( On \ B ) -> F : A --> ( On \ B ) ) |
18 |
|
frn |
|- ( F : A --> ( On \ B ) -> ran F C_ ( On \ B ) ) |
19 |
14 17 18
|
3syl |
|- ( ( A e. On /\ B e. On ) -> ran F C_ ( On \ B ) ) |
20 |
19
|
difss2d |
|- ( ( A e. On /\ B e. On ) -> ran F C_ On ) |
21 |
|
reldisj |
|- ( ran F C_ On -> ( ( ran F i^i B ) = (/) <-> ran F C_ ( On \ B ) ) ) |
22 |
20 21
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( ( ran F i^i B ) = (/) <-> ran F C_ ( On \ B ) ) ) |
23 |
19 22
|
mpbird |
|- ( ( A e. On /\ B e. On ) -> ( ran F i^i B ) = (/) ) |
24 |
16 23
|
jca |
|- ( ( A e. On /\ B e. On ) -> ( F : A -1-1-onto-> ran F /\ ( ran F i^i B ) = (/) ) ) |