| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oacomf1olem.1 |
|- F = ( x e. A |-> ( B +o x ) ) |
| 2 |
|
oaf1o |
|- ( B e. On -> ( x e. On |-> ( B +o x ) ) : On -1-1-onto-> ( On \ B ) ) |
| 3 |
2
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( x e. On |-> ( B +o x ) ) : On -1-1-onto-> ( On \ B ) ) |
| 4 |
|
f1of1 |
|- ( ( x e. On |-> ( B +o x ) ) : On -1-1-onto-> ( On \ B ) -> ( x e. On |-> ( B +o x ) ) : On -1-1-> ( On \ B ) ) |
| 5 |
3 4
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( x e. On |-> ( B +o x ) ) : On -1-1-> ( On \ B ) ) |
| 6 |
|
onss |
|- ( A e. On -> A C_ On ) |
| 7 |
6
|
adantr |
|- ( ( A e. On /\ B e. On ) -> A C_ On ) |
| 8 |
|
f1ssres |
|- ( ( ( x e. On |-> ( B +o x ) ) : On -1-1-> ( On \ B ) /\ A C_ On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) ) |
| 9 |
5 7 8
|
syl2anc |
|- ( ( A e. On /\ B e. On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) ) |
| 10 |
7
|
resmptd |
|- ( ( A e. On /\ B e. On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) = ( x e. A |-> ( B +o x ) ) ) |
| 11 |
10 1
|
eqtr4di |
|- ( ( A e. On /\ B e. On ) -> ( ( x e. On |-> ( B +o x ) ) |` A ) = F ) |
| 12 |
|
f1eq1 |
|- ( ( ( x e. On |-> ( B +o x ) ) |` A ) = F -> ( ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) <-> F : A -1-1-> ( On \ B ) ) ) |
| 13 |
11 12
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( ( ( x e. On |-> ( B +o x ) ) |` A ) : A -1-1-> ( On \ B ) <-> F : A -1-1-> ( On \ B ) ) ) |
| 14 |
9 13
|
mpbid |
|- ( ( A e. On /\ B e. On ) -> F : A -1-1-> ( On \ B ) ) |
| 15 |
|
f1f1orn |
|- ( F : A -1-1-> ( On \ B ) -> F : A -1-1-onto-> ran F ) |
| 16 |
14 15
|
syl |
|- ( ( A e. On /\ B e. On ) -> F : A -1-1-onto-> ran F ) |
| 17 |
|
f1f |
|- ( F : A -1-1-> ( On \ B ) -> F : A --> ( On \ B ) ) |
| 18 |
|
frn |
|- ( F : A --> ( On \ B ) -> ran F C_ ( On \ B ) ) |
| 19 |
14 17 18
|
3syl |
|- ( ( A e. On /\ B e. On ) -> ran F C_ ( On \ B ) ) |
| 20 |
19
|
difss2d |
|- ( ( A e. On /\ B e. On ) -> ran F C_ On ) |
| 21 |
|
reldisj |
|- ( ran F C_ On -> ( ( ran F i^i B ) = (/) <-> ran F C_ ( On \ B ) ) ) |
| 22 |
20 21
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( ( ran F i^i B ) = (/) <-> ran F C_ ( On \ B ) ) ) |
| 23 |
19 22
|
mpbird |
|- ( ( A e. On /\ B e. On ) -> ( ran F i^i B ) = (/) ) |
| 24 |
16 23
|
jca |
|- ( ( A e. On /\ B e. On ) -> ( F : A -1-1-onto-> ran F /\ ( ran F i^i B ) = (/) ) ) |