Step |
Hyp |
Ref |
Expression |
1 |
|
oacl |
|- ( ( A e. On /\ x e. On ) -> ( A +o x ) e. On ) |
2 |
|
oaword1 |
|- ( ( A e. On /\ x e. On ) -> A C_ ( A +o x ) ) |
3 |
|
ontri1 |
|- ( ( A e. On /\ ( A +o x ) e. On ) -> ( A C_ ( A +o x ) <-> -. ( A +o x ) e. A ) ) |
4 |
1 3
|
syldan |
|- ( ( A e. On /\ x e. On ) -> ( A C_ ( A +o x ) <-> -. ( A +o x ) e. A ) ) |
5 |
2 4
|
mpbid |
|- ( ( A e. On /\ x e. On ) -> -. ( A +o x ) e. A ) |
6 |
1 5
|
eldifd |
|- ( ( A e. On /\ x e. On ) -> ( A +o x ) e. ( On \ A ) ) |
7 |
6
|
ralrimiva |
|- ( A e. On -> A. x e. On ( A +o x ) e. ( On \ A ) ) |
8 |
|
simpl |
|- ( ( A e. On /\ y e. ( On \ A ) ) -> A e. On ) |
9 |
|
eldifi |
|- ( y e. ( On \ A ) -> y e. On ) |
10 |
9
|
adantl |
|- ( ( A e. On /\ y e. ( On \ A ) ) -> y e. On ) |
11 |
|
eldifn |
|- ( y e. ( On \ A ) -> -. y e. A ) |
12 |
11
|
adantl |
|- ( ( A e. On /\ y e. ( On \ A ) ) -> -. y e. A ) |
13 |
|
ontri1 |
|- ( ( A e. On /\ y e. On ) -> ( A C_ y <-> -. y e. A ) ) |
14 |
10 13
|
syldan |
|- ( ( A e. On /\ y e. ( On \ A ) ) -> ( A C_ y <-> -. y e. A ) ) |
15 |
12 14
|
mpbird |
|- ( ( A e. On /\ y e. ( On \ A ) ) -> A C_ y ) |
16 |
|
oawordeu |
|- ( ( ( A e. On /\ y e. On ) /\ A C_ y ) -> E! x e. On ( A +o x ) = y ) |
17 |
8 10 15 16
|
syl21anc |
|- ( ( A e. On /\ y e. ( On \ A ) ) -> E! x e. On ( A +o x ) = y ) |
18 |
|
eqcom |
|- ( ( A +o x ) = y <-> y = ( A +o x ) ) |
19 |
18
|
reubii |
|- ( E! x e. On ( A +o x ) = y <-> E! x e. On y = ( A +o x ) ) |
20 |
17 19
|
sylib |
|- ( ( A e. On /\ y e. ( On \ A ) ) -> E! x e. On y = ( A +o x ) ) |
21 |
20
|
ralrimiva |
|- ( A e. On -> A. y e. ( On \ A ) E! x e. On y = ( A +o x ) ) |
22 |
|
eqid |
|- ( x e. On |-> ( A +o x ) ) = ( x e. On |-> ( A +o x ) ) |
23 |
22
|
f1ompt |
|- ( ( x e. On |-> ( A +o x ) ) : On -1-1-onto-> ( On \ A ) <-> ( A. x e. On ( A +o x ) e. ( On \ A ) /\ A. y e. ( On \ A ) E! x e. On y = ( A +o x ) ) ) |
24 |
7 21 23
|
sylanbrc |
|- ( A e. On -> ( x e. On |-> ( A +o x ) ) : On -1-1-onto-> ( On \ A ) ) |