| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omex |  |-  _om e. _V | 
						
							| 2 | 1 | sucid |  |-  _om e. suc _om | 
						
							| 3 |  | omelon |  |-  _om e. On | 
						
							| 4 |  | 1onn |  |-  1o e. _om | 
						
							| 5 |  | oaabslem |  |-  ( ( _om e. On /\ 1o e. _om ) -> ( 1o +o _om ) = _om ) | 
						
							| 6 | 3 4 5 | mp2an |  |-  ( 1o +o _om ) = _om | 
						
							| 7 |  | oa1suc |  |-  ( _om e. On -> ( _om +o 1o ) = suc _om ) | 
						
							| 8 | 3 7 | ax-mp |  |-  ( _om +o 1o ) = suc _om | 
						
							| 9 | 2 6 8 | 3eltr4i |  |-  ( 1o +o _om ) e. ( _om +o 1o ) | 
						
							| 10 |  | 1on |  |-  1o e. On | 
						
							| 11 |  | oacl |  |-  ( ( 1o e. On /\ _om e. On ) -> ( 1o +o _om ) e. On ) | 
						
							| 12 | 10 3 11 | mp2an |  |-  ( 1o +o _om ) e. On | 
						
							| 13 |  | oacl |  |-  ( ( _om e. On /\ 1o e. On ) -> ( _om +o 1o ) e. On ) | 
						
							| 14 | 3 10 13 | mp2an |  |-  ( _om +o 1o ) e. On | 
						
							| 15 |  | onelpss |  |-  ( ( ( 1o +o _om ) e. On /\ ( _om +o 1o ) e. On ) -> ( ( 1o +o _om ) e. ( _om +o 1o ) <-> ( ( 1o +o _om ) C_ ( _om +o 1o ) /\ ( 1o +o _om ) =/= ( _om +o 1o ) ) ) ) | 
						
							| 16 | 12 14 15 | mp2an |  |-  ( ( 1o +o _om ) e. ( _om +o 1o ) <-> ( ( 1o +o _om ) C_ ( _om +o 1o ) /\ ( 1o +o _om ) =/= ( _om +o 1o ) ) ) | 
						
							| 17 | 16 | simprbi |  |-  ( ( 1o +o _om ) e. ( _om +o 1o ) -> ( 1o +o _om ) =/= ( _om +o 1o ) ) | 
						
							| 18 | 9 17 | ax-mp |  |-  ( 1o +o _om ) =/= ( _om +o 1o ) |