| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oaordi |
|- ( ( B e. On /\ C e. On ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |
| 2 |
1
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( C +o A ) e. ( C +o B ) ) ) |
| 3 |
|
oveq2 |
|- ( A = B -> ( C +o A ) = ( C +o B ) ) |
| 4 |
3
|
a1i |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A = B -> ( C +o A ) = ( C +o B ) ) ) |
| 5 |
|
oaordi |
|- ( ( A e. On /\ C e. On ) -> ( B e. A -> ( C +o B ) e. ( C +o A ) ) ) |
| 6 |
5
|
3adant2 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. A -> ( C +o B ) e. ( C +o A ) ) ) |
| 7 |
4 6
|
orim12d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A = B \/ B e. A ) -> ( ( C +o A ) = ( C +o B ) \/ ( C +o B ) e. ( C +o A ) ) ) ) |
| 8 |
7
|
con3d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. ( ( C +o A ) = ( C +o B ) \/ ( C +o B ) e. ( C +o A ) ) -> -. ( A = B \/ B e. A ) ) ) |
| 9 |
|
df-3an |
|- ( ( A e. On /\ B e. On /\ C e. On ) <-> ( ( A e. On /\ B e. On ) /\ C e. On ) ) |
| 10 |
|
ancom |
|- ( ( ( A e. On /\ B e. On ) /\ C e. On ) <-> ( C e. On /\ ( A e. On /\ B e. On ) ) ) |
| 11 |
|
anandi |
|- ( ( C e. On /\ ( A e. On /\ B e. On ) ) <-> ( ( C e. On /\ A e. On ) /\ ( C e. On /\ B e. On ) ) ) |
| 12 |
9 10 11
|
3bitri |
|- ( ( A e. On /\ B e. On /\ C e. On ) <-> ( ( C e. On /\ A e. On ) /\ ( C e. On /\ B e. On ) ) ) |
| 13 |
|
oacl |
|- ( ( C e. On /\ A e. On ) -> ( C +o A ) e. On ) |
| 14 |
|
eloni |
|- ( ( C +o A ) e. On -> Ord ( C +o A ) ) |
| 15 |
13 14
|
syl |
|- ( ( C e. On /\ A e. On ) -> Ord ( C +o A ) ) |
| 16 |
|
oacl |
|- ( ( C e. On /\ B e. On ) -> ( C +o B ) e. On ) |
| 17 |
|
eloni |
|- ( ( C +o B ) e. On -> Ord ( C +o B ) ) |
| 18 |
16 17
|
syl |
|- ( ( C e. On /\ B e. On ) -> Ord ( C +o B ) ) |
| 19 |
15 18
|
anim12i |
|- ( ( ( C e. On /\ A e. On ) /\ ( C e. On /\ B e. On ) ) -> ( Ord ( C +o A ) /\ Ord ( C +o B ) ) ) |
| 20 |
12 19
|
sylbi |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( Ord ( C +o A ) /\ Ord ( C +o B ) ) ) |
| 21 |
|
ordtri2 |
|- ( ( Ord ( C +o A ) /\ Ord ( C +o B ) ) -> ( ( C +o A ) e. ( C +o B ) <-> -. ( ( C +o A ) = ( C +o B ) \/ ( C +o B ) e. ( C +o A ) ) ) ) |
| 22 |
20 21
|
syl |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C +o A ) e. ( C +o B ) <-> -. ( ( C +o A ) = ( C +o B ) \/ ( C +o B ) e. ( C +o A ) ) ) ) |
| 23 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 24 |
|
eloni |
|- ( B e. On -> Ord B ) |
| 25 |
23 24
|
anim12i |
|- ( ( A e. On /\ B e. On ) -> ( Ord A /\ Ord B ) ) |
| 26 |
25
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( Ord A /\ Ord B ) ) |
| 27 |
|
ordtri2 |
|- ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
| 28 |
26 27
|
syl |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
| 29 |
8 22 28
|
3imtr4d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C +o A ) e. ( C +o B ) -> A e. B ) ) |
| 30 |
2 29
|
impbid |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B <-> ( C +o A ) e. ( C +o B ) ) ) |