Step |
Hyp |
Ref |
Expression |
1 |
|
0elon |
|- (/) e. On |
2 |
|
oaord |
|- ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) |
3 |
1 2
|
mp3an1 |
|- ( ( B e. On /\ A e. On ) -> ( (/) e. B <-> ( A +o (/) ) e. ( A +o B ) ) ) |
4 |
|
oa0 |
|- ( A e. On -> ( A +o (/) ) = A ) |
5 |
4
|
adantl |
|- ( ( B e. On /\ A e. On ) -> ( A +o (/) ) = A ) |
6 |
5
|
eleq1d |
|- ( ( B e. On /\ A e. On ) -> ( ( A +o (/) ) e. ( A +o B ) <-> A e. ( A +o B ) ) ) |
7 |
3 6
|
bitrd |
|- ( ( B e. On /\ A e. On ) -> ( (/) e. B <-> A e. ( A +o B ) ) ) |
8 |
7
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> A e. ( A +o B ) ) ) |