Step |
Hyp |
Ref |
Expression |
1 |
|
onelss |
|- ( B e. On -> ( A e. B -> A C_ B ) ) |
2 |
1
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( A e. B -> A C_ B ) ) |
3 |
|
oawordex |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> E. x e. On ( A +o x ) = B ) ) |
4 |
2 3
|
sylibd |
|- ( ( A e. On /\ B e. On ) -> ( A e. B -> E. x e. On ( A +o x ) = B ) ) |
5 |
|
oaord1 |
|- ( ( A e. On /\ x e. On ) -> ( (/) e. x <-> A e. ( A +o x ) ) ) |
6 |
|
eleq2 |
|- ( ( A +o x ) = B -> ( A e. ( A +o x ) <-> A e. B ) ) |
7 |
5 6
|
sylan9bb |
|- ( ( ( A e. On /\ x e. On ) /\ ( A +o x ) = B ) -> ( (/) e. x <-> A e. B ) ) |
8 |
7
|
biimprcd |
|- ( A e. B -> ( ( ( A e. On /\ x e. On ) /\ ( A +o x ) = B ) -> (/) e. x ) ) |
9 |
8
|
exp4c |
|- ( A e. B -> ( A e. On -> ( x e. On -> ( ( A +o x ) = B -> (/) e. x ) ) ) ) |
10 |
9
|
com12 |
|- ( A e. On -> ( A e. B -> ( x e. On -> ( ( A +o x ) = B -> (/) e. x ) ) ) ) |
11 |
10
|
imp4b |
|- ( ( A e. On /\ A e. B ) -> ( ( x e. On /\ ( A +o x ) = B ) -> (/) e. x ) ) |
12 |
|
simpr |
|- ( ( x e. On /\ ( A +o x ) = B ) -> ( A +o x ) = B ) |
13 |
11 12
|
jca2 |
|- ( ( A e. On /\ A e. B ) -> ( ( x e. On /\ ( A +o x ) = B ) -> ( (/) e. x /\ ( A +o x ) = B ) ) ) |
14 |
13
|
expd |
|- ( ( A e. On /\ A e. B ) -> ( x e. On -> ( ( A +o x ) = B -> ( (/) e. x /\ ( A +o x ) = B ) ) ) ) |
15 |
14
|
reximdvai |
|- ( ( A e. On /\ A e. B ) -> ( E. x e. On ( A +o x ) = B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) |
16 |
15
|
ex |
|- ( A e. On -> ( A e. B -> ( E. x e. On ( A +o x ) = B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) ) |
17 |
16
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( A e. B -> ( E. x e. On ( A +o x ) = B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) ) |
18 |
4 17
|
mpdd |
|- ( ( A e. On /\ B e. On ) -> ( A e. B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) |
19 |
7
|
biimpd |
|- ( ( ( A e. On /\ x e. On ) /\ ( A +o x ) = B ) -> ( (/) e. x -> A e. B ) ) |
20 |
19
|
exp31 |
|- ( A e. On -> ( x e. On -> ( ( A +o x ) = B -> ( (/) e. x -> A e. B ) ) ) ) |
21 |
20
|
com34 |
|- ( A e. On -> ( x e. On -> ( (/) e. x -> ( ( A +o x ) = B -> A e. B ) ) ) ) |
22 |
21
|
imp4a |
|- ( A e. On -> ( x e. On -> ( ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) ) |
23 |
22
|
rexlimdv |
|- ( A e. On -> ( E. x e. On ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) |
24 |
23
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( E. x e. On ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) |
25 |
18 24
|
impbid |
|- ( ( A e. On /\ B e. On ) -> ( A e. B <-> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) |