| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onelss |  |-  ( B e. On -> ( A e. B -> A C_ B ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. On /\ B e. On ) -> ( A e. B -> A C_ B ) ) | 
						
							| 3 |  | oawordex |  |-  ( ( A e. On /\ B e. On ) -> ( A C_ B <-> E. x e. On ( A +o x ) = B ) ) | 
						
							| 4 | 2 3 | sylibd |  |-  ( ( A e. On /\ B e. On ) -> ( A e. B -> E. x e. On ( A +o x ) = B ) ) | 
						
							| 5 |  | oaord1 |  |-  ( ( A e. On /\ x e. On ) -> ( (/) e. x <-> A e. ( A +o x ) ) ) | 
						
							| 6 |  | eleq2 |  |-  ( ( A +o x ) = B -> ( A e. ( A +o x ) <-> A e. B ) ) | 
						
							| 7 | 5 6 | sylan9bb |  |-  ( ( ( A e. On /\ x e. On ) /\ ( A +o x ) = B ) -> ( (/) e. x <-> A e. B ) ) | 
						
							| 8 | 7 | biimprcd |  |-  ( A e. B -> ( ( ( A e. On /\ x e. On ) /\ ( A +o x ) = B ) -> (/) e. x ) ) | 
						
							| 9 | 8 | exp4c |  |-  ( A e. B -> ( A e. On -> ( x e. On -> ( ( A +o x ) = B -> (/) e. x ) ) ) ) | 
						
							| 10 | 9 | com12 |  |-  ( A e. On -> ( A e. B -> ( x e. On -> ( ( A +o x ) = B -> (/) e. x ) ) ) ) | 
						
							| 11 | 10 | imp4b |  |-  ( ( A e. On /\ A e. B ) -> ( ( x e. On /\ ( A +o x ) = B ) -> (/) e. x ) ) | 
						
							| 12 |  | simpr |  |-  ( ( x e. On /\ ( A +o x ) = B ) -> ( A +o x ) = B ) | 
						
							| 13 | 11 12 | jca2 |  |-  ( ( A e. On /\ A e. B ) -> ( ( x e. On /\ ( A +o x ) = B ) -> ( (/) e. x /\ ( A +o x ) = B ) ) ) | 
						
							| 14 | 13 | expd |  |-  ( ( A e. On /\ A e. B ) -> ( x e. On -> ( ( A +o x ) = B -> ( (/) e. x /\ ( A +o x ) = B ) ) ) ) | 
						
							| 15 | 14 | reximdvai |  |-  ( ( A e. On /\ A e. B ) -> ( E. x e. On ( A +o x ) = B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) | 
						
							| 16 | 15 | ex |  |-  ( A e. On -> ( A e. B -> ( E. x e. On ( A +o x ) = B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( A e. On /\ B e. On ) -> ( A e. B -> ( E. x e. On ( A +o x ) = B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) ) | 
						
							| 18 | 4 17 | mpdd |  |-  ( ( A e. On /\ B e. On ) -> ( A e. B -> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) | 
						
							| 19 | 7 | biimpd |  |-  ( ( ( A e. On /\ x e. On ) /\ ( A +o x ) = B ) -> ( (/) e. x -> A e. B ) ) | 
						
							| 20 | 19 | exp31 |  |-  ( A e. On -> ( x e. On -> ( ( A +o x ) = B -> ( (/) e. x -> A e. B ) ) ) ) | 
						
							| 21 | 20 | com34 |  |-  ( A e. On -> ( x e. On -> ( (/) e. x -> ( ( A +o x ) = B -> A e. B ) ) ) ) | 
						
							| 22 | 21 | imp4a |  |-  ( A e. On -> ( x e. On -> ( ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) ) | 
						
							| 23 | 22 | rexlimdv |  |-  ( A e. On -> ( E. x e. On ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( A e. On /\ B e. On ) -> ( E. x e. On ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) | 
						
							| 25 | 18 24 | impbid |  |-  ( ( A e. On /\ B e. On ) -> ( A e. B <-> E. x e. On ( (/) e. x /\ ( A +o x ) = B ) ) ) |